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We analyze a time series of the combustion pressure in the idle state, measured from a spark
ignition engine of a motorcycle. It is clarified that the engine system can be described by a low-
dimensional deterministic dynamics perturbed by some stochastic process. We also propose a method
to stabilize the chaotic behaviour of engine’s data by adopting the Pyragas’ method. We actually use
this method in a computer experiment for the control of combustion pressure data to demonstrate the
efficiency of the proposed method. As a result of the experiment, we eliminate the fluctuations in the
combustion pressure data and obtain a periodic orbit.
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1. Introduction

Cycle-to-cycle combustion variations in spark igni-
tion engines have been a subject of intensive research
for many years. Instabilities of the combustion process,
which result in the difficulty of controlling engines, can
be a cause of harmful fluctuations of the power out-
put, which results in the difficulty of controlling en-
gines [1 – 3]. It is known that elimination of fluctua-
tions of cyclic motion would lead to a 10% increase in
the power output of engines [4, 5]. It is thus of great
importance to control the motion of engines by elimi-
nating the fluctuations, which leads to an improvement
of engine performance.

The main sources of combustion instabilities are
fluctuations in the gaseous motion inside the cylin-
der during combustion, fluctuations in the amount of
fuel, air and recycled exhaust-gas supplied to the cylin-
der, and fluctuations in the mixing of fresh mixture
and residual gas inside the cylinder near the spark
plug [6]. It has been discussed whether these factors
stem from a stochastic or deterministic process. Kan-
tor [7] conducted a study of spark ignition engines
by using his exhaust-gas temperature model. Daw et
al. [8, 9] proposed a model of gas circulation, which
combines stochastic and nonlinear deterministic ele-
ments. Recently several researchers analyzed internal
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combustion pressure data in terms of nonlinear dynam-
ics [1, 5]. The results suggest that the engine systems
have a nonlinear dynamical structure, although the data
include stochastic parts.

Motivated by the above facts, we also analyzed
several kinds of spark ignition engine data of a mo-
torcycle, which were obtained under the collabora-
tion of the Yamaha Motor Co., Ltd. The experiments
were conducted under two conditions of engine rev-
olutions: one at 1,400 rpm without load, which cor-
responds to the idle state, and the other at 4,350 rpm
with a steady load (see Section 2 for more details).
Even though the external input, which drives the en-
gine to run, is periodic, the amplitude in the pressure
data is fluctuated under both conditions. At first, the
fluctuations were considered due to stochastic noise
such as thermal noise. It was, however, clarified from
the results of the analysis, that the engine system has
a low-dimensional deterministic dynamics. The pres-
ence of the deterministic components of the engine
system means that it is possible to control the motion
of the engine’s output by utilizing the underlying dy-
namics, in principle. We therefore considered the con-
trol method to eliminate the fluctuations. In the scheme
of controlling chaos, we propose a control method of
the engine system by adopting the delayed feedback
control [10].
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The characteristic of Pyragas’ method is that, even
if we do not know the equations of the dynamical sys-
tem concerned, we can obtain a periodic orbit simply
by using its time series and its delayed feedback. We
do not require to take a Poincaré section. It is there-
fore easily applied to experimental systems. As for
the subject of controlling chaos, the Ott-Grebogi-Yorke
(OGY) method [11] is also popular and useful. In the
OGY method we can only obtain the unstable periodic
orbits embedded in chaotic attractors, because the un-
derlying dynamics is not essentially changed. In con-
trast, Pyragas’ method essentially changes the under-
lying dynamics with a delayed feedback term. If the
delayed feedback term converges, we can obtain an
unstable periodic orbit embedded in the chaotic attrac-
tor; but otherwise a new different solution from that of
the original dynamical system is created. It is known
that this method can stabilize chaotic dynamics which
has the Hopf bifurcation or period-doubling bifurca-
tion, although it fails to stabilize the saddle-node type
of chaotic dynamics that the OGY method can do [12].
Furthermore, Pyragas’ method cannot specify the de-
sired orbit which is stabilized even if the delayed feed-
back term converges, but the OGY method can do the
desired orbit strictly if one can find the unstable peri-
odic orbit in phase space with a Poincaré section. How-
ever, it is normally difficult to find unstable periodic
orbits in the online process of application of the OGY
method.

As stated above, each method has its drawbacks and
advantages. Our purpose was to eliminate the fluctua-
tions in the engine system and to obtain a periodic or-
bit. We thus did not adhere to the form of the obtained
target orbit and just only had to make the motion of the
engine’s output periodic. We utilized Pyragas’ method
considering how this method is effective on the engine
system.

The organization of the paper is as follows. The ex-
perimental data are provided in Section 2. In Section 3,
we present the results of the nonlinear analysis for in-
ternal combustion pressure data in the idle state. We
propose a control method and demonstrate the effi-
ciency of the method with a computer experiment in
Section 4. Section 5 is devoted to conclusions and dis-
cussion.

2. Experimental Data

The experiments were carried out with a four-
stroke [13], single-cylinder 250 cc engine at Yamaha

Motor Co., Ltd. The experimental data were taken
under two conditions of engine revolutions: one
at 1,400 rpm without load, which corresponds to the
idle state, and the other at 4,350 rpm with a steady load.
Each data point was measured consecutively against a
crank angle for 1,000 cycles. The sampling times were
approximately 8.4 kHz for the case of 1,400 rpm, and
approximately 26.1 kHz for 4,350 rpm, respectively.
The cycle here means the combustion cycle. Each com-
bustion (reciprocating movement of the four strokes) is
performed in two revolutions of the engine. In terms of
the crank angle, one cycle means 720 degrees, consist-
ing of 720 points.

Five kinds of data were obtained for each of the
two conditions: pressure (internal combustion pressure
in the cylinder), boost voltage (related to the amount
of air intake), hydrocarbon (exhaust-gas, related to the
amount of residual gas), air-to-fuel ratio and injection
current (related to the amount of fuel injection). The
injection current that determines the amount of fuel
injection has a pulse shape. It is considered to be the
external input for the engine system. The interval of
pulses is almost constant. The air-to-fuel ratio should
theoretically be a constant, although the value varies
slightly during the experiment. It can be regarded as
a control parameter. We focused on the three kinds of
data, the combustion pressure, the boost voltage and
the hydrocarbon, and analyzed them. These data are
not periodic, while the external input (the injection
current) is almost periodic. Especially, the fluctuations
of the low-frequency components at the lower revo-
lution (1,400 rpm) are much larger than those at the
higher revolution (4,350 rpm). The dynamics of the en-
gine may be stabilized at the higher revolution by the
suppression of the fluctuations of low-frequency com-
ponents. Then only the fluctuations of high-frequency
components would be prominent, whose components
cannot be distinguished from thermal noise. There-
fore it is particularly valuable to analyze the idle state
(1,400 rpm). In the following section, we will show the
analysis of the pressure data in the idle state.

3. Time Series Analysis for Combustion Pressure
Data in the Idle State

Figure 1 shows a typical time series of the combus-
tion pressure represented by the crank angle for 15 cy-
cles. It was directly measured from a pressure sen-
sor inside the cylinder and thus contains noise such
as electrical noise. First of all, we reconstruct the at-



K. Matsumoto et al. · A Spark Ignition Engine of Motorcycle 589

0 3600 7200 10800
0

100

200

300

400

500

600

700

800

900

Crank angle (°)

P
r
e
s
s
u
r
e
 
(
k
P
a
)

Fig. 1. Typical time series of the combus-
tion pressure of 15 cycles.
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Fig. 2. Reconstructed attractor projected to
the three-dimensional space of the pres-
sure data. About 50 cycles are depicted for
visibility.

tractor from the pressure data by applying the embed-
ding technique [14, 15]. Applying a method of mov-
ing average to the original data of Fig. 1, we removed
noise slightly for the reconstruction. We used the data
after such a noise reduction. We denoted a crank an-
gle by θ [strictly speaking, the crank angle is not con-
stant in time, so that it should be denoted by θ (t),
but the crank angle can be regarded as an indepen-
dent variable, since the fluctuation is comparatively
small]. Then, a time series of the pressure was denoted
by a variable x(θ ). Given a delay time τ and an em-

bedding dimension m, we could make an embedding
vector x(θ ) = (x(θ ),x(θ + τ), . . . ,x(θ + (m − 1)τ)).
The delay time was chosen to be τ = 30 by trial-and-
error. In order to determine the number of the embed-
ding dimension, we adopted the false nearest neigh-
bours method [16]. We estimated m = 4, designating
a percentage of false nearest neighbours below 5% as
the criterion. We show the reconstructed attractor pro-
jected to the three-dimensional space in Fig. 2, where
about 50 cycles are depicted for visibility. From Figs. 1
and 2, one can see that the amplitude fluctuates. Al-
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Fig. 3. Local maxima of the pressure data
vs. the combustion cycle.
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Fig. 4. Data of the low-frequency compo-
nents of Figure 3.

though the external input is periodic, the behaviour of
the pressure is not totally periodic. If a stable dynam-
ics exists in this engine system, the orbit of the pressure
would become a limit cycle. There is, however, some
deviation from a limit cycle. We can consider two pos-
sibilities of the reason: this deviation is caused by a
destabilization of the dynamics or just by a stochastic
process.

In order to study the reason, we plotted the local
maxima of the pressure data. The data of 1,000 cy-

cles were not sufficient for this purpose. We there-
fore used the local maximum data for 10,000 cy-
cles measured in another trial but under the same
conditions. The data are shown for 8,192 cycles
in Figure 3. The long-term fluctuations are clearly
observed. It is conceivable that the low-frequency
components result from a certain dynamics. On the
other hand, the high-frequency components are prob-
ably due to noise. We examined the two parts
separately.
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Fig. 5. Autocorrelation coefficients for the
pressure data of the low-frequency compo-
nents.
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Fig. 6. Data of the high-frequency compo-
nents of Figure 3.

Figure 4 shows the data of the low-frequency com-
ponents obtained by the use of a low-pass filter. We cal-
culated autocorrelation coefficients for the data, which
are shown in Figure 5. We can see that there exist
periodic components of 2,500 to 3,000 cycles. This
suggests that a slow deterministic dynamics underlies
the data. We also calculated the Lyapunov exponents,
using the Sano-Sawada method [17]. The embedding
dimension was m = 3, because the operation of tak-
ing local maxima is equivalent to taking a Poincaré

section; thus one dimension was reduced. The delay
time was determined to be τ = 1,000 by trial-and-
error. The result was λ1 = 0.66, λ2 = −0.12 and λ3 =
−1.11. This result suggests that the engine system pro-
duces chaos, because there is at least one positive Lya-
punov exponent. For comparison, we show the result
of m = 2. In this case, we obtained λ1 = 0.29 and λ2 =
−1.10. We calculated the Lyapunov dimensions for
both cases m = 2 and m = 3, which are denoted by D2L
and D3L, respectively: D2L = 1+0.29/|−1.10|≈ 1.26
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Fig. 7. Histogram of the fluctuations of the
high-frequency components.

and D3L = 2 + (0.66− 0.12)/|− 1.11| ≈ 2.55. These
are the results in the discrete system of taking the
Poincaré section. Returning to the continuous system
before taking the Poincaré section, the Lyapunov di-
mensions D2L and D3L become 2.26 and 3.55, respec-
tively. Judging from these results, one might consider
that the reconstructed attractor shown in Fig. 2 can be
embedded in three dimensions. If this case should be
true, λ2 =−0.12 estimated at m = 3 in the discrete sys-
tem would be spurious, but in this paper we followed
the criterion of a percentage of false nearest neighbours
below 5%, as we already mentioned, and adopted the
embedding dimension m = 4 in the continuous system.
We, in turn, adopted the embedding dimension m = 3
in the discrete system after taking the Poincaré section.

Next, we focused on the fluctuations of high-
frequency components. Figure 6 shows the data of
the high-frequency components, which are obtained
by subtracting the data shown in Fig. 4 from the
data shown in Figure 3. We divided the range of val-
ues in Fig. 6 into 160 bins to count points which
fall into each bin, and then obtained the histogram
shown in Fig. 7, where it is depicted in the range
of [−30 : 30] for visibility. As can be seen in this fig-
ure, the distribution is approximated by the Gaussian
distribution. Our speculation is plausible that the high-
frequency components result from a stochastic pro-
cess. One might consider that the behaviour includ-
ing the high-frequency components in the engine sys-

tem stems from a high-dimensional chaos or even an
infinite-dimensional chaos which is described by a par-
tial differential equation. However, new dynamical be-
haviours can essentially appear in reduction systems
whose dimension is lower than that of the original sys-
tems [18]. In the case of the engine system, the new dy-
namics in the reduction system corresponds to a low-
dimensional dynamics consisting of the low-frequency
components. Based on this standpoint, it is legitimate
to consider that the remaining part consisting of the
high-frequency components results from a stochastic
process.

In conclusion, it was clarified that the engine system
shows a low-dimensional dynamics which is probably
chaos. In the next section we consider a control method
to eliminate the fluctuations of the time series as seen
in Figure 1.

4. A New Method for Controlling the Engine
System

In this section, we consider a way of controlling
the engine system within the framework of controlling
chaos. We have two approaches to control the engine
system: One is to clarify the underlying dynamics in
the engine system and then control it, and the other is to
directly control it without clarifying the dynamics. We
consider the latter approach and propose a method to
stabilize the deterministic but chaotic behaviour in the
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Fig. 8. Application of the method proposed
here to the pressure data. A period-one or-
bit was obtained by the effect of feedback
control.

engine’s data, applying Pyragas’ method. As already
mentioned in Section 1, this method is easily applica-
ble to experimental systems. Examples of experimental
implementation are electronic chaos oscillators [19],
magnet-elastic systems [20], lasers [21] and a cardiac
system [22].

Our idea is as follows. As already mentioned in Sec-
tion 3, the engine system includes a low-dimensional
dynamics. We can describe the dynamics, the formula
of which is actually unknown, as

Ẋ(θ ) = F(X(θ )), (1)

where time is represented by the crank angle θ as in
Section 3 and X = (x1,x2, . . . ,xm) is a state vector.
From the results of Section 3, the time series of the
combustion pressure mainly follows a dynamical sys-
tem, and is thus represented by a dynamical variable
denoted by x1(θ ). In order to apply Pyragas’ method,
we observe the pressure x1(θ ) and add the delayed
feedback D(θ ) = x1(θ − T ) − x1(θ ) with the delay
time T , which is the period of a desired orbit, to the
engine system:

Ẋ(θ ) = F(X(θ ))+ G(θ )C, (2)

where

G(θ ) =




−F0, if KD(θ ) ≤−F0,

KD(θ ), if −F0 < KD(θ ) < F0,

F0, if KD(θ ) ≥ F0,

(3)

and C is the column vector: c11 = 1 and c j1 = 0 for 2 ≤
j ≤ m. Here K is a feedback gain, F0 > 0 is a saturat-
ing value of the feedback and T becomes 720 since
we want to make one combustion cycle be exactly two
revolutions of the engine. There is a reason for placing
the saturating value F0. Applying the present method
directly to actual engines, the large perturbation can
cause abnormal combustion and lead to engine stall.
The saturating value prevents this phenomenon.

In order to examine the method, we performed a
computer experiment for the combustion pressure data.
Actually, we used the embedding technique since we
did not explicitly have all of the dynamical variables
in the engine system. In Section 3, the delay time and
the embedding dimension of time series of combustion
pressure were determined to be τ = 30 and m = 4, re-
spectively. We consider the following type of system:

ẋ(θ ) = f1(x,y,z,w)+ G(θ ),

ẏ(θ ) = f2(x,y,z,w),

ż(θ ) = f3(x,y,z,w),

ẇ(θ ) = f4(x,y,z,w),

(4)

where x(θ ) = x1(θ ), y(θ ) = x1(θ +τ), z(θ ) = x1(θ +
2τ) and w(θ ) = x1(θ +3τ). Because we cannot define
the vector field at all points of phase space in (4), due
to a finite number of data, the problem is that a point
perturbed by the effect of the feedback does not have
any corresponding velocity. Each point in the embed-
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ded orbit has an approximated velocity. Utilizing this
information, we replace the perturbed point with the
nearest neighbour point in the embedded orbit [23].

The experiment was conducted for the pressure data
that contain 1,000 cycles as shown in Fig. 1 with K =
0.1 and F0 = 0.4. The result is illustrated in Fig-
ure 8. In this experiment, the feedback control was
provided throughout the time course starting at θ = 0.
A period-one orbit was obtained by the effect of the
feedback control, which was established at approxi-
mately 8,000◦ of the crank angle corresponding to the
eleventh combustion cycle. However, this result is not
exactly successful. The period of the obtained periodic
orbit is not 720 but 636, which means that the feedback
term does not converge. In other words, the resultant
solution is not a solution embedded in the original at-
tractor but a new solution created by the effect of the
feedback term. The obtained orbit is, however, periodic
and the fluctuations are eliminated. This fact motivates
us to conduct actual experiments in online control.

5. Conclusion and Discussion

We presented the results of time series analysis
for the combustion pressure data in the idle state
by dividing the local maximum data of the pres-
sure into two parts: the low-frequency components
and the high-frequency components. We showed that
the low-frequency components are caused by a low-
dimensional dynamics which is a slow dynamics with
long-term correlations, and the high-frequency compo-
nents are caused by a stochastic process. In the present
framework it is concluded that the cycle-to-cycle com-
bustion variations in engines would result from the in-
terplay of chaotic dynamics of engine systems and a
stochastic process. If the chaotic dynamics is domi-
nant in engine systems as compared to the stochastic
process, it is possible to control them by utilizing the
dynamics.

Based on this idea, we proposed a method for con-
troling the engine by adopting Pyragas’ method. In or-
der to examine the method, we made a computer exper-

iment. Since we did not know all of the dynamical vari-
ables in the engine system, we used only the pressure
data to verify it in a topological sense. We actually sta-
bilized the fluctuations of the pressure data and gener-
ated a period-one orbit with the proposed method. The
period of a stabilized orbit did not, however, coincide
with the period of the engine cycle. Two possible rea-
sons can be considered. One possibility stems from the
situation that the algorithm used here for the approxi-
mation of the vector field was not so elegant; thereby
we could not obtain an unstable periodic orbit embed-
ded in the attractor. The other possible reason could be
that a new periodic solution was surely created, which
was different from those embedded in the original at-
tractor. In either case, the proposed method can suc-
cessfully eliminate the fluctuations and thus would be
worth being applied to actual experiments in online
control.

In the actual experiments we cannot directly apply
the method proposed in Section 4 to the engine system
because the pressure resulting from combustion is not
a directly accessible variable. A small modification is
needed. Instead of the pressure, we have to find an al-
ternative variable (for instance, the boost voltage) to di-
rectly influence the engine system, denoted by x2(θ ). It
follows that we observe the pressure x1(θ ) and give the
delayed feedback to the variable x2(θ ). In brief, the el-
ements of C in (2) are replaced with c21 = 1 and c j1 = 0
for j = 1, 3 ≤ j ≤ m.
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