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Abstract. We here review the second lecture, in which we show that
Cantor coding can be used to hierarchically embed temporal sequences
produced by a chaotic or a random information source. We also propose
a hypothesis on the possibility of Cantor coding for the formation of
episodic memory in the hippocampus and also for the category formation
of episodic memory. Smale’s horseshoe map defines Cantor coding as a
conjugacy of expanding dynamics embedded within the map. On the
other hand, in the real world, this type of conjugacy does not always exist.
We demonstrate the use of Cantor coding in a mathematical model of the
hippocampus. The computational results suggest a dynamic mechanism
for the formation of episodic memory and category formation of episodic
memory.

1 The background of lecture II

The aim of the present lecture is to show how information of the time series
generated by chaotic dynamical system is encoded in Cantor sets generated in a
contracting subspace of chaos-driven contracting systems, and also to apply this
idea to the construction of a mathematical model of episodic memory formation.

Episodic memory is defined by Tulving, as memory concerning the informa-
tion of individual experiences [1]. It should be noted that an individual experience
is not a series of events that one actually experiences in daily life, but, rather, can
be identified with the reorganized structure of neural activity created internally,
associated with the input information during such events. Furthermore, clinical
reports on the subjects H. M. [2] and R. B. [3] have shown that the hippocampus,
especially CA1, is indispensable for the formation of episodic memory.

With respect to mathematical modeling, it is important to note that the
structure of CA3 is very similar to that of the neural network model of associative
memory [4,5]. The model studies since the work of Marr [6] are based on the
idea that the hippocampus temporarily retains episodic memory as an associative
memory, as reported by Treves and Rolls [7], and by McClelland et al. [8]. On the



other hand, conventional neural network model of associative memory possess
attractor dynamics only, and thus they cannot create temporal patterns that
could represent, episodic memory. Therefore, to prove the theory proposed by
Marr, Treves and Rolls, McClelland and others, an additional mechanism to
produce a temporal series of patterns is required.

The structural similarity of neocortical networks to the CA3 network is obvi-
ous. As demonstrated in lecture I, the recurrent networks of excitatory neurons
with inhibitory interneurons forming a common architecture of neocortical sub-
areas exhibit a temporal series of memory patterns that show chaotic itinerancy.
Because CA3 mainly consists of excitatory recurrent networks and inhibitory
interneurons, the activity of CA3 is expected not to generate stationary spatial
patterns, but to produce a temporal series of spatial patterns.

The structure of CA1, on the other hand, lacks the recurrent connections of
the pyramidal cells, thus the CA1 network may be stable as long as there are no
synaptic modifications or inputs. Thus, it is possible to model the hippocampus
as a chaos-driven contracting system.

It may also be worth considering that this mathematical model provides the
dynamic characteristics for a reorganized hippocampal network driven by the
other parts of the brain.

Let us briefly mention the related studies on Cantor coding. Coding on Cantor
sets was first demonstrated in an iterated function system (IFS) [9-12] and later
in a recurrent neural network (RNN) [13-15]. IFS was proposed to realize the
coding of spatial patterns as fractals on Cantor sets. In particular, Karlin and
Norman proposed a deterministic model of animal’s stochastic behavior during
reinforcement learning. A stochastic renewal of plural contacting systems led
to the generation of Cantor sets. RNN was proposed to realize the Cantor set
coding of temporal patterns, which were produced as a random series by the
network.

Our problem was how to encode the information in the symbol sequences
generated in a chaotic dynamical system into the system’s contracting subspace.
We investigated this issue in several chaos-driven contracting systems, where var-
ious Cantor sets appeared to encode various temporal patterns that the chaotic
system produced [16-18] .

2 A computational model for the hippocampus

The model we propose is a computational one at the macroscopic network level.
In other words, the concern here is with a basic network model exhibiting and
encoding a temporal series of patterns. Thus, we do not deal with the details
of the characteristics of single neurons or even with specificity of the layered
structure of the network, but rather we try to model the basic network function
related to the production and encoding of episodic memory. To construct such a
model for the hippocampus, we first describe the physiological and anatomical
facts at the network level. This description provides the basic architecture for



the model, focusing on the network structure of the CA1 and CA3 regions and
their interactions.

The detailed structure of hippocampus is quite different from the neocortex.
Nevertheless, we would like to focus on the similarities between the two for the
following reason. As mentioned in lecture I, the network consisting of the recur-
rent network of pyramidal cells and the inhibitory interneurons, which usually
act as destabilization by inhibitory cells, produces a chaotic series of memory pat-
terns. Finding a similar network in the hippocampus is the first step in modeling
the formation and encoding of episodic memory.

In CA3, the axon-collaterals of pyramidal cells make synaptic contact with
other pyramidal cells, and thus form a recurrent network. Furthermore, each
pyramidal cell makes an excitatory synaptic contact with a neighboring in-
hibitory cell. Such a cell inhibits the neighboring pyramidal cells for at least 200
ms in all the physiological conditions studied so far. The other axon-collaterals
of pyramidal cells, the Schaeffer collaterals, make synaptic contact with the api-
cal dendrites of the pyramidal cells in CA1l. Thus these connections establish a
unidirectional coupling from the CA3 network to the CAl network. Mathemat-
ically, this can be called a skew-product transformation of the dynamics in CA3
and CA1.

In CA1l, on the other hand, recurrent connections between pyramidal cells
have not been observed. Inhibitory cells also exist in CA1, each of which mainly
receives the output of the nearest neighbor pyramidal cell and each in turn in-
hibits its neighboring pyramidal cells. The axon-collaterals of the CA1 pyramidal
cells project to various other areas such as the subiculum, the entorhinal cortex,
and other subcortical areas.

The inhibitory cells that project on CA3 and CA1 from other areas have rel-
atively long axon-collaterals that form an interneuronal network [19,20]. Both
cholinergic and GABAergic afferents project from the septum to hippocampal
CA3 and CAl. The cholinergic afferents contact both the pyramidal and in-
hibitory cells in the hippocampus. On the other hand, the GABAergic afferents
make synaptic contacts mainly with inhibitory cells [21-23]. In fact, Toth et
al. concluded from their experiments that the GABAergic septo-hippocampal
afferents selectively inhibit the hippocampal inhibitory cells and consequently
disinhibit the pyramidal cells.

Taking into account these anatomical and physiological facts, and also some
additional hypotheses, the network model of the hippocampus was constructed [24].

One of the assumptions is that time is discrete that is not necessarily made in
conventional model of neurodynamics. The reason that we made this assumption
stems from both theories of cortical information processing based on rhythmic
cortical activity and experimental facts describing the relation between 6 and
~ rhythms (see, for example, [25-28]). If # rhythms are incorporated in the
formation of episodic memory, each cycle requires approximately 200 ms for the
transmission of the episodic signal from the hippocampus back to itself through
the neocortical areas and the entorhinal cortex [19]. This suggests that a sequence
of episodic events is generated during one cycle of the # oscillations. On the other



hand, the v rhythms may be related to conscious experience, which is known to
activate hippocampal neurons. If so, it is possible that the y rhythms “filter”
and discretize continuous signals accompanied by the 6 oscillations. Thus, a
few (4-8) discrete wave packets having the - range frequency may represent a
sequence of events during one cycle of this signal transmission. Lisman et al [27,
28] attempted to relate the appearance of such v wave packets to the magic
number 7 £ 2 [29] for short-term memory. As mentioned in lecture I, this magic
number has also been discussed in relation to chaotic dynamical systems [30, 31].
The neural mechanism for the magic number is still an open question, because
the magic number operates not only in remembering a sequence of numbers over
a short period of time, but also for inferring the logical depth of a sentence
that hierarchically contains other sentences, such as “A heard that B told C
that D loves E”, and also for classifying events and experiences into a number
of categories. Although the neural mechanism for the magic number may be of
interest, analysis of it is not our present purpose and we will not consider it
further.

Let X and Y be N-dimensional vectors, with their ith components denoted
by z; and y;, respectively, representing the activity of the ith pyramidal and
inhibitory cells in CA3. For the reasons given above, we introduce a discrete
time step n for the development of the neurodynamics. The following equation
provides a 2N- dimensional dynamical system in CA3 [24].

(X(n+1),Y(n+1) = F(X(n),Y(n)), (1)

where F' is a 2IN-dimensional nonlinear transformation denoting the neurody-
namics. Taking into account the effect of the stimulus-induced stochastic release
of synaptic vesicles widely observed in the hippocampus, however, we interpret F’
as representing a stochastic renewal of neurodynamics, as in the case of Tsuda’s
model of successive association of memories [32-35].

The stochastic renewal of neurodynamics for the ith set of pyramidal and
inhibitory cells is defined as follows.
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i(n) (otherwise)
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i 1) = Y\N £aj=1"1"] Y 3
yi(n +1) {0 (otherwise), ®

where z; € [-1,1](: = 1,---,N), y; € [-1,1](¢i = 1,---,N), w;; denotes a
synaptic weight from pyramidal cell j to i, d; € [0, 8] a synaptic weight from the
inhibitory cell 7 to the pyramidal cell ¢, and e;; € [0, ] a synaptic weight from the
pyramidal cell j to the inhibitory cell 7. Furthermore, the neural transformation
is given by the sigmoid function.

H, () = H,(2) = 2/(1 + eap(~Xe2)) - L. (4)

Here A3 is a steepness parameter.



Semantic memories encoded in the parahippocampal area are here repre-
sented by a vector, each component of which denotes the activity of pyramidal
cell. The memories are assumed to be constructed in the recurrent network of
pyramidal cells by the Hebbian learning algorithm;

1
w;j :szfl’y, (5)
w

where 2! is the ith component of the pth memory, X# = (zf,---, /).

We first describe what could happen in the CA3 network in the case without
the effects of the inhibitory neurons. This condition of the network, denoted
by d; = 0 for all i, can occur under the physiological conditions such that the
inhibitory neurons in CA3 are inhibited by the GABAergic afferents coming from
the septum. In this case, as in the conventional model of associative memory, the
network dynamics become attractor dynamics. Some attractors are generated to
represent semantic memories by the above Hebbian learning algorithm.

We next describe what could happen in the CA3 network in the case without
the effects of GABAergic neurons from the septum, namely, with the effects of
the inhibitory neurons of CA3 alone. This situation is similar to the one in the
dynamic associative memory model [32-38]. As expected, the chaotic transitions
between memories occur through chaotic itinerancy [39,40, 33] between attractor
ruins representing the memory traces (see also [41]). The chaotic sequence of
memory patterns generated in such a way may be considered a representation
of episodic memory.

Let us further describe our model for the skeleton of the CA1l network and
its dynamics.

Let U and V be M-dimensional vectors of the space [0, 1]M, U = (u1, -+, un)
and V = (vy,---,vpn), where u; and v; denote the states of pyramidal cell ¢ and
stellate cell 4, respectively. Here, M is the number of cells of each type.

’UZ(’TL) = Z b”u](n), (7)

(n) =zj(n) (z;(n) >0), (8)
(n) = —z;(n) (zj(n) <0) (9)

Here, T;; denotes the synaptic connection from the CA3 pyramidal cell j to the
CA1 pyramidal cell i, and its value is fixed to a randomly chosen value from
the uniform distribution on [0, 1]. In the simulation [24], we set b; = 1.0 and
bij =01if i # j, and ¢;; = 1.0 and ¢;; = 0 if ¢ # j. It would be worth studying
network performance with different arrangements of connections, but here we
review only the results in this restricted case. Because the Shaeffer collaterals
of the CA3 pyramidal cells are excitatory, we introduced the terms z’.. We also
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septum make synaptic contact with the stellate cells in CA1. We assumed § << 1
in the presence of GABAergic inhibitory inputs from the septum, and § = O(1)
in the absence of such disinhibitions.
The input-output transformation for the pyramidal cells is also the sigmoid
function.
Hu(z) = 1/(1+ eap(~Ai2)), (10)

where \; is a steepness parameter.

3 Does Cantor coding provide a biologically plausibile
representation of information in the hippocampus?

In the simulation of the CA1 model, we chose the parameter values that satisfied
the inequality that establishes the contraction condition. We thus obtained a
chaotic dynamics-driven contracting system as a computational model for the
CA3-CA1 unidirectional couplings at the network level. We conducted computer
experiments step by step in three separated stages, in each of which the inputs
to CA1 pyramidal cells differed.

(1) Inputs of the random sequence of two temporal patterns, ‘100’ and ‘10’

The symbol ‘1’ indicates the presence of a pulse and ‘0’ the absence of a
pulse, so the random input sequence consists of two different pulse sequences.
The randomness of the sequence was provided by a coin tossing algorithm. The
computation results showed a hierarchical coding of such random temporal se-
quences on the Cantor set. In any two-dimensional space projected from the
N-dimensional space of the membrane potential of pyramidal cells in CA1, say
the space of u; — us, a nonoverlapping Cantor set is clearly seen (see Fig. 1). In
Fig. 1, whenever the pulse denoted by ‘1’ appears in input, the activity of u; and
us is plotted at the next time step. The plotted dots constitute a self-similar set,
called a Cantor set, in the following way. The activity shown by the two subsets
on the right upper part and on the left lower part of the figure indicate that the
pulse sequences including the present pulse were ‘10*” and ‘100*’, respectively.
Here, the symbol ‘*’ denotes arbitrary random sequences of ‘100’ and ‘10’, and
the right hand side in the sequence indicates the past. The upper two subsets
indicate that the sequences including the present pulse were ‘1010*’ in the subse-
quent upper subset and ‘10100*” in the subsequent lower subset, respectively. In
a similar way, the left lower two subsets indicate ‘100100*’ and ‘10010*’, respec-
tively. This shows a hierarchical representation of the embedding of the random
temporal series consisting of ‘100" and ‘10°.

(2) Inputs of random sequences of continuous spatial patterns

We define a continuous spatial pattern by a vector, with each component rep-
resenting the activity of each pyramidal cell in CA3 that is sent to all pyramidal
cells in CA1, via Shaeffer collaterals of the CA3 pyramidal cells. The activity
is represented by a real number in the unit interval, [0,1]. A random sequence
consisting of different patterns acted as the temporal input to CA1l, and the
sequence is hierarchirally embedded in the N-dimensional space of pyramidal
cell activity (see reference [24] for a concrete example of the embedding).
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Fig.1. A Cantor coding of random temporal series consisting of two pulse sequences,
‘10’ and ‘100°’. N = 64, A, = 50, e = 0.032, § = 0.06, 6 = 0, b;; = 1(i = j) and bi;; =0
(otherwise), and c;; = 1(i = j) and c;; = 0 (otherwise).

(3) Inputs of the temporal output series from the pyramidal cells in CA3

This case corresponds to the actual physiological situation. Our model CA3
produces chaotic itinerancy of memory patterns, where a temporal series of mem-
ories represents an episode. Although the Cantor set is manifested in CA1 phase
space, overlaps between subsets are generally observed. It is usually difficult to
separate such overlapped subsets, so their appearance creates difficulties in de-
coding the embedded temporal patterns. Thus, the overlapping must be resolved
so that the proposed algorithm will apply to the hippocampus. This important
study will be published elsewhere.

In all of the three cases, the history of the temporal sequence is represented
by the hierarchy of Cantor sets in phase space, hence the name Cantor coding.

4 summary and discussion

We proposed a computational model for the formation of episodic memory. The
model was constructed to represent the basic network of the hippocampal CA3
and CA1, and their interactions. The main characteristic of CA3 dynamics is the
generation of a temporal series that can be described as chaotic itinerancy [41].
It was shown that a certain kind of chaotic behavior provides a dynamic informa-
tion channel, and hence such chaotic behavior should also be expected to work



computationally in the brain [36,41]. On the other hand, the main characteris-
tic of CA1 dynamics is a contaracting dynamics if it is isolated so that there is
less bombardment from CA3 changing the strength of connections. Thus, overall
activity should follow chaos-driven contracting dynamics.

Generally, in chaos-driven contracting dynamics, the information read out by
chaotic dynamics is written in the contracting space by the contracting dynamics,
as is seen in the dissipative baker’s transformation. In other words, a symbol
sequence created by chaotic dynamics is represented as a subset of a Cantor
set generated in the contracting subspace. A code table can thus be dynamically
formed on a Cantor set that is generated in the phase space in CA1 pyramidal
cells. This is what we would expect in CA1 with weak or no synaptic learning:
the demonstration of a one-to-one correspondence between each symbol sequence
generated by chaotic dynamics in CA3 and each position of a Cantor element in
CA1, by virtue of unidirectional coupling from CA3 to CA1l, i.e., CA3 — CALl.

The distance between (or the closeness of) semantic memories (or events ex-
perienced) represented by a spatial pattern of neuronal activity could be specified
in CA3 by a scalar product between all the two patterns. On the other hand,
the distance between the different temporal series may be defined in CA1 by the
Euclidian norm between the corresponding two points in the Cantor set. In fact,
it can be defined through the hierarchies of the Cantor set. Thus, the concept
of distance between episodic memories could be realized in CA1l. Therefore, the
category formation for a variety of episodes may be expected to be realized in
CA1 by the clustering of subsets of the Cantor set. This clustering will effec-
tively be established via synaptic learning, i.e., LTP (see, for example, [42]). For
such a categorization process for a temporal series of events, a Hausdorff metric
between Cantor subsets can be used.

Our hypothesis on Cantor coding is depicted in Fig. 2.

In the formation of episodic memory, the relationship between the temporal
series of spatial patterns in CA3 and the geometry with a Hausdorff metric of the
Cantor set in CA1 may be flexibly altered, whereas in the cortices the alteration
of the representation by structural changes will vary slowly. In this respect,
the hippocampus may be likened to a blackboard. Writing and erasing on this
hippocampus “blackboard” could be related to the 6 -rhythms, thus taking about
200 ms. The timing between this writing and erasing and the slowly varying
transition between symbols in the cortex is a key to the formation of episodic
memory. This illustrates the necessity of a long period of time, from perhaps, a
few years to a lifetime, for the complete formation of episodic memory. This can
be understood by taking account of the existence of retrograde amnesia for one
to three years as well as anterograde amnesia after hippocampal deprivation [2],
and also after CA1 lesions [3].

Whether the Cantor coding actually occurs in CA1 can be examined in the
laboratory experiments that must initially be conducted under a nonlearning
condition, using a blocker for LTP, followed by experiments to observe alteration
of the set structure in the absence of such a blocker. The three stages illustrated
above will correspond to an actual procedure for the stages of experiments.
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Fig.2. Hypothesis on Cantor coding. See the text for details.
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