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Abstract. The transitory activity of neuron assemblies has been ob-
served in various areas of animal and human brains. We here highlight
some typical transitory dynamics observed in laboratory experiments
and provide a dynamical systems interpretation of such behaviors. Us-
ing the information theory of chaos, it is shown that a certain type of
chaos is capable of dynamically maintaining the input information rather
than destroying it. Taking account of the fact that the brain works in a
noisy environment, the hypothesis can be proposed that chaos exhibiting
noise-induced order is appropriate for the representation of the dynam-
ics concerned. The transitory dynamics typically observed in the brain
seems to appear in high-dimensional systems. A new dynamical systems
interpretation for the cortical dynamics is reviewed, cast in terms of
high-dimensional transitory dynamics. This interpretation differs from
the conventional one, which is usually cast in terms of low-dimensional
attractors. We focus our attention on, in particular, chaotic itinerancy, a
dynamic concept describing transitory dynamics among “exotic attrac-
tors”, or “attractor ruins”. We also emphasize the functional significance
of chaotic itinerancy.

1 The background of lecture I

Cortical activity appears to be unstable. A single time series of such activity is
often observed to be “nonstationary” with aperiodic changes between synchro-
nized and desynchronized states, transitory dynamics between quasi-attractors
(“attractor ruins” in our words), propagation of activity with various frequencies
and the appearance and disappearance of phase-related synchronizations. Based
on model studies, we propose the hypothesis that chaotic itinerancy can be uni-
versally observed not only in cortical synaptic networks but also in cortical gap
junction systems, though in the latter it appears in a different way.



Before proceeding to the main issue, let us raise a naive but fundamental
question concerning brain function. What is the brain doing? There can, of
course, be various possible answers, but probably the most fundamental one
would be that it is interpreting signals, not only those arising from the exter-
nal world, but also those created within itself. The reason is the following. The
purpose of cognition may be to discover the nature of objects. The purpose of
movement may be to influence the rule of behavior, as well as to achieve cogni-
tive purpose. If complete information is provided in advance of these processes,
then the brain can uniquely solve the problem concerned and does not need
interpretation. Usually, however, the information that the brain receive is only
incomplete one. Therefore, the brain must interpret the information and deter-
mine its nature. This consideration leads us to the study of hermeneutics of the
brain [1-6].

What kind of level of activity should be considered 7 The dynamic features
of the brain might mainly appear in its activity at the mesoscopic level. At the
microscopic level, that is, at single channel or single neuron levels, the brain
activity appears to be highly irregular and nonstationary. On the other hand, at
the macroscopic level, that is, at the level of a functional area or of the whole
brain, the activity appears to be much less disordered. According to a conven-
tional theory of phase transitions developed in physics, a macroscopic ordered
motion can appear as the result of cooperativity of microscopic elements of the
system concerned. The ordered motion can be described by one or more or-
der parameters. In equilibrium phase transitions, two thermal equilibrium states
are interchanged by changes in a control parameter such as temperature, mag-
netic field, etc. In a neighborhood of the critical point of the transition, complex
nonequilibrium motions appear. The characteristic scales in space of the sys-
tem in such a critical regime range from microscopic to macroscopic. Then, the
time-dependent phenomena can be observed at the mesoscopic level, and such a
temporal evolution indicates the appearance of ordered motions.

A similar situation can also occur in far-from-equilibrium systems, where
in place of thermal equilibrium states various kinds of nonequilibrium station-
ary states can form the basis of phenomena. The state transitions in far-from-
equilibrium systems can be described by bifurcations. We here apply this frame-
work to the transitions that appear during the dynamic brain activity. The term
“critical point” is replaced by the term “bifurcation point” within this frame-
work. Dissipative systems are typical far-from-equilibrium systems, where a sta-
tionary inflow and outflow of energy or matter plays a role in maintaining the sta-
tionary state. In such a system, order parameters often behave time-dependently.
Thus, the motions can be described by the time-dependency of quantities such
as density functions, where a density function is, in general, a function of space,
time and other quntities such as the membrane potential of neurons and the
calcium concentrations inside the membrane, namely p(z,s,t) = p(z, (v,c),t).
Thus, it is called a mesoscopic-level description. A typical equation of motion
at this level is the Navier-Stokes equation of hydrodynamics. The description of



complex spatio-temporal patterns in the brain must be made at the mesoscopic
level.

A further crucial problem stems from the fact that the brain works in a
noisy environment. Its mechanism has not yet been clarified. In this situation,
we assume that the interplay between noise and dynamical systems provides clue
for solving the problem of how the brain treats noisy signals. Among others,
noise-induced order [32], stochastic resonance [8], and chaotic resonance [9] are
noteworthy. Noise-induced order occurs in a certain class of chaotic dynamical
systems. At a particular noise level, a transition appears from the chaotic state
to the ordered state, characterized by the appearance of sharp peak in the power
spectrum, an abrupt decrease of Kolmogorov-Sinai entropy, and a change of the
Lyapunov exponent from positive to negative values. The orbit is aggregated
rather than segregated by the noise. In multi-stable systems, the most stable
state is usually selected by adding noise, provided that the noise itself does not
destabilize the stable states. If external noise is superimposed upon a periodic
force, the state may change to resonate the periodic force. This is termed a
stochastic resonance. A similar resonance may occur in the chaotic environment,
where chaos replaces noise. This is called a chaotic resonance. This idea was
suggested, based on the observations that both chaos and noise are ubiquitous
in the brain.

Curious transitory phenomena have been observed in various conditions in
animal and even human brains. Among others, the typical phenomena appear as
chaotic transitions between quasi-attractors [10-13], “nonstationary” alteration
between synchronized and desynchronized states [14], the propagation of wave
packets of - and 0- range activity [15,16], and the synchronization of epochs
with large phase differences that appear irregularly [17]. These curious phenom-
ena possess the common feature that the autonomic transition between states
is both chaotic and itinerant. These states can be described by a conventional
attractor. Actually, there have been a number of interpretation of brain activity
in terms of the attractor concept. However, a conventional attractor, that is, a
geometric attractor, is an inappropriate model for the interpretation of these
transitory dynamics. Because the transitory dynamics appear to be transition
between states, such a state should be described as unstable. Thus, we must find
a new model for such a state, in other words, we must introduce a new model for
the dynamic process such that it allows for both stability and instability. Here,
instability describes a transition from such a state, and stability describes the
return to the original state. We must extend this process further to successive
transitions between multiple states. We have proposed chaotic itinerancy as a
most appropriate concept for such transitory dynamics [18-20, 3, 4].

For further details of the background of this study, in particular, for the sig-
nificance of the interpretation of brain dynamics in terms of high-dimensional
dynamical systems and also for the potential role of chaotic itinerancy, the read-
ers can refer to the recent magnum opus [4] of one of the authors (IT). The
references on complex systems (see, for example, the reference [22]) are also
highly recommended.



2 Theoretical basis for the interpretation of cortical
dynamic activity

There seems to be a common mechanism underlying all the dynamic behaviors
described above. To study such an underlying mechanism, chaotic dynamical
systems of high dimension and the information theory of chaotic dynamical
systems are required.

2.1 Attractors

We would like to describe the dynamic activity mentioned above in terms of
the concepts of dynamical systems. Cortical dynamic behavior appears to be
based on far-from-equilibrium states. To maintain a system in such a state, a
continuous energy pumping is necessary, because of the energy dissipation that
is inevitable in all living systems. Thus, it is natural to use the attractor concept.

Let us, therefore, consider the relationship between a kind of attractor and
a dynamic state. Stationary or steady states in behavior can be represented by
a fixed point, namely a point attractor. Furthermore, periodic, quasi-periodic
and irregular motions can be represented by a limit cycle, a torus and a strange
attractor, respectively. It should be noted that the term, ‘strange attractor’ was
proposed [23] as the name for the fourth attractor following a fixed point, a
limit cycle and a torus, indicating a turbulent state expected to appear after the
collapse of tori of three and higher dimension by the infinitesimal interactions
between variables. Hence, rigorously speaking, the use of this concept should
be restricted to descriptions of attractors that appear after the collapse of tori
of finite dimension, where such finite dimensionality is precisely the difference
between this theory and Landau theory of hydrodynamic turbulence. In this
respect, the strange attractor can be distinguished from ordinary chaotic attrac-
tors for which different scenarios from the one by successive Hopf bifurcations are
provided, such as successive period doubling bifurcations or saddle-node bifurca-
tions. In recent literature, however, the term, ‘strange attractor’ has been used
to describe all chaotic attractors. In the present article, we follow this conven-
tional use of the terminology, but have restricted it to relatively low-dimensional
chaos.

These four kinds of attractors appear also in lower-dimensional dynamical
systems, up to three dimensions. At least three dimensions are necessary for the
appearance of a strange attractor in the case of vector fields, whereas only one
dimension is enough for the existence of chaos in a discrete map. Thus, three is
a critical number for the presence of strange attractors.

Hyperchaos, proposed by Réssler [24], is defined as possessing plural positive
Lyapunov exponents, giving rise to the number four as the critical dimensional-
ity because of the presence of at least two dimensions for instability, at least one
dimension for dissipation, i.e., for stability, and one orbital dimension. The con-
cept of hyperchaos may be one of the key concepts for the dynamic description
of the high-dimensional irregular activity of the brain. It is, however, insuffi-
cient for the dynamic concepts by which the transitory dynamics is adequately



represented (in most cases appearing to be aperiodically itinerant), because hy-
perchaos does not distinguish between the itinerant transitory dynamics and
simply chaotic dynamics. Our interest here is a common dynamic representation
for such transitory dynamics observed in the brain. Thus, a high-dimensional dy-
namic description is necessary to interpret the transitory and itinerant processes.
This description may provide a new key to modeling the dynamics of brain ac-
tivity. We claim that chaotic itinerancy is an adequate dynamic description for
such processes.

We can discuss the critical dimensionality of chaotic itinerancy. According
to Kaneko [25], let us estimate two factors that are supposed to determine the
dimensionality for the chaotic transition. Let N be the system’s dimension. Let
us assume that the number of states in each dimension is two, taking into ac-
count the presence of two stable states separated by a saddle. The number of
admissible orbits cyclically connecting the subspaces increases in proportion to
(N — 1)!, whereas the number of states increases in proportion to 2V. If the
former number exceeds the latter, then all orbits cannot necessarily be assigned
to each of the states, hence causing the transitions. In this situation, we expect
itinerant motions between states. This critical number is siz for chaotic itin-
erancy [25,26]. This critical dimensionality may provide us with the boundary
between low- and high-dimensional dynamical systems.

As discussed below, several scenarios describing the appearance of chaotic
itinerancy can be considered, such as the typical case of the appearance of Milnor
attractors [29]. A Milnor attractor is, by definition, accompanied with positive
measure of the orbits attracted to it. It can also be accompanied by the orbits
repelled from it. The lowest dimension of a Milnor attractor is a fixed point that
appears in the critical situation of the tangent bifurcation in one-dimensional
maps or the saddle-node bifurcation in higher dimensions [29, 31].

2.2 Information structure and noise effect

So far, we have classified the dynamical systems with the dimensionality of at-
tractors, and also proposed the use of chaotic itinerancy to give a dynamic
description for the transitory dynamics observed in the brain. Because the brain
works in a noisy environment, however, one must consider the effects of noise
on dynamical systems and the information processing of such noisy dynamical
systems.

Other than stochastic resonance, which is now well known as the crucial
effect of noise with periodic forcing, there can be several effects of noise in the
presence of chaos. In the case of the presence of a complicated basin structure
such as seen in, for example, the KIII model of Freeman, the system behaves so
that the external noise enhances the chaotic response of the olfactory bulb that
detects an odor [27,28].

Furthermore, the existence of nonuniform chaos can be justified in excitable
systems such as neural systems and such chaos possesses peculiar characteristics.
The nonuniformity stems from the nonuniformity of the Markov partition, which
provides the inherent scale of measure of the Markov states. Thus, this brings



about uneven probabilities of the residence time of orbits to Markov states. This
inherent scale of observation is mismatched with the scale given by external noise,
for example, the uniform scale when uniform noise is applied. This mismatch
plays a role in generating ordered motions out of chaos when noise is applied.
This has been called noise-induced order [32].

This property of excitable systems has been claimed to be effective for the
transmission of input information in chaotic systems [33-35]. For the first time,
let us review information theory, which clarifies the information structure of low-
dimensional chaotic systems, and then let us examine the propagation of input
information in the coupled chaotic systems. Without loss of generality, let us
consider a differentiable map f defined on the interval I, f : I — I. We consider
the information contained in the initial conditions. Because one cannot assign
the initial conditions with infinite precision, one must consider the distribution
for the assignment of initial conditions. In the usual computer simulations, this
assignment may be a uniform distribution, or it may be a Gaussian distribution
in the case of the usual laboratory experiments. Or, one may consider from the
beginning, a certain probability distribution as an initial distribution. Thus, we
consider the information contained in the given distribution p(x) and also its
evolution according to the evolution of dynamical systems.

To see this, let us define the Kullback divergence which indicates the relative
information content of p(z) to ¢(x):

p(z)
q(x)’

where x € I. The evolution of the distribution is provided by the Frobenius-
Perrone operator F', which is defined as follows:

_ p(y)

I(p) = /dfvp(x)log (1)

where f’(y) indicates the derivative of f with respect to y, and the summation
is taken over the inverse image of x.

Let us define the information flow by the difference between the Kullback
divergence before and after applying the operation.

Al(p) = I(p) — I(Fp). (3)

We describe the evolution of information contained in the probability distribu-
tion relative to the stationary distribution p*(x) of the system. This p*(x) is
invariant under the operator F, i.e., Fp*(x) = p*(x). The following equation
holds if p*(z) is absolutely continuous with respect to the Lebesgue measure,
that is, if p*(x) — 0 as the Lebesgue measure m(zx) goes to zero.

Al(p) = / dap* (z)log|df (z) /dx]. (4)

The right hand side of this equation is just the Lyapunov exponent. There-
fore, the information flow is provided by the Lyapunov exponent. Oono [36] and



Shaw [37] gave essentially the same treatment. The above formulae, eq. (3) and
eq. (4), show that the initial slope of the decay of information with respect to
the evolution of the distribution by F' provides the Lyapunov exponent.

It is, however, not sufficient to reveal the details of the information structure.
In chaotic systems, a local divergence rate fluctuates according to the distribution
of derivatives (eigenvalues of Jacobian matrix in high-dimensional maps and
also in vector fields), which gives rise to the fluctuations in information flow.
Furthermore, our observation is limited to not only the highest digit, but also
the lowest one, so that the observation is restricted to a finite window. By the
Lyapunov exponent, only the information lost at (or flowing out of) the highest
digit is calculated. We require another quantity by which all the information
flowing out of the observation window is calculated. Such a quantity is mutual

information.
Zp )logp(j ZZP p(j/)logp(j/i)~", (5)

where p(j/i) is a transition probability from state ¢ to state j. The mutual
information is information shared between two states, thus one can calculate the
information transmitted from one state to other states, and consequently one
can obtain the detailed structure of the fluctuations of information flow.

By introducing a time-dependency into the definition of mutual information,
we can further investigate information mizing.

Zp )logp(j ZZP M (j/i)logp™ (/)" (6)

where 7 is a time and p(™ (5 /i) the transition probability from i to j after n time-
steps. There are typically two cases: (1) a linear decay of the mutual information
in time and (2) an exponential decay, described as follows.

(1) I(t) = I(0) — at.

Taking the derivative with respect to ¢ on both sides, we obtain dI(t)/dt =
—a = const. This implies that the same quantity of information decays in each
time. This situation is the case that the fluctuation of information is very small,
so that the information structure is adequately described by the Lyapunov ex-
ponent.

(2) I(t) = I(0)eap(~rt)

Taking the derivative with respect to ¢ on both sides, we obtain dI(t)/dt =
—rI(t), thus (dI/dt)/I = —r = const. This implies that the information quantity
decays by the same ratio in each time. In this second situation, the fluctuation
of information is large enough to produce the mixing property of information.
The mixing property here means that each digit of the variable of dynamical
system containes the information of any other digits. This is guaranteed by the
calculations of bit-wise mutual information, because such calculations provide
the shared information between any two digits.



The difference of properties between case (1) and case (2) demonstrates a
crucial difference in the network properties of coupled chaotic systems, relating
to the way input information is propagated and the dynamic maintenance of such
information. The input information to such a network is dynamically maintained
and is transmitted from one chaotic individual system to the others if each
chaotic individual system possesses the large fluctuations of information flow as
in case (2). Propagation of the input information can also be extended to other
systems placed far from the input. On the other hand, if the network consists
of chaotic systems that possess small fluctuations of information flow, as in case
(1), then the network cannot have such properties.

One tends to think that chaos is useless for information processing, because
input information appears to be destroyed by the orbital instability of chaos.
The orbital instability rather brings about a role as information source [36, 37],
because symbol sequences are produced by such orbital instability, provided that
symbols and decision point(s) that determine the symbols are given. The evolu-
tion rule of states as a dynamic grammar determines a structure of admissible
symbol sequences [38]. If the property of information mixing holds in each in-
dividual system, the input information can be dynamically maintained in its
networks, in spite of the orbital instability of chaos, as mentioned above. Thus,
chaotic networks of this kind can be considered to be an information channel.

The studies of chaos from the viewpoint of information processing have pro-
duced various ideas concerning the possibilities of the application of chaos to
studies of the function of the brain and also to studies of the structure of mind.
John Nicolis and others [39-42] proposed a great variety of discrimination of
inputs by means of a chaotic system with multiple basins, especially in relation
to a thalamo-cortical pathway for sensory information. Furthermore, the capac-
ity of short-term memory (working memory), namely the magic number seven
plus or minus two that G. Miller [43] found was estimated by means of chaotic
dynamical systems. Recently, Kaneko has proposed another mechanism to gener-
ate this magic number with globally coupled map systems [25], which is related
to the critical number, siz for the appearance of chaotic itinerancy. Through
the intensive and also extensive studies of animal olfaction, Freeman and his
colleagues have clarified the dynamic mechanism of perception with chaos and
chaotic itinerancy [11-13]. Taking into account the fact that the chaos produced
in an excitable system (such as neurons and neuron assemblies) possesses the
mixing property of information, it turns out that further large-scale networks can
maintain information in a dynamic manner because of the presence of chaotic
behavior. It should be noted that chaotic itinerancy also has the property of
information mixing.

3 Chaotic itinerancy

In this section, we review the characteristics of chaotic itinerancy (CI) and also
discuss possible mechanisms for the genesis of chaotic itinerancy.



3.1 Dynamic features of chaotic itinerancy

To show the dynamic features of CI, we here highlight two systems, both of which
offer opportunities to study CI, together with another typical system [18]: one is a
nonequilibrium neural network model for successive association of memories [44,
3] and the other is a globally coupled chaotic map [19]. In particular, it seems
that these models show differences in mechanisms for the genesis of CI.

The neocortical architecture of neural networks has been studied in details.
There is a common structure in different areas, while a specific one can be
distinguished in each area. Although the relationship between structure and
function is clearly one of the main problems in biological evolution and remains
an open question, it seems likely that there is a strong correlation between them.
From this point of view, we assume that a common functional feature for any
information processing is manifested in the common network structure in all
areas. We considered a dynamic phase of successive association of memories
to represent such a functional feature. We adopted the network architecture
described by Szentdgothai [45-47] for our model.

The fundamental architecture of the model consists of the recurrent connec-
tions of the pyramidal cells and the feedback connections of interneurons, which
provide randomly fixed positive or negative effects on the membrane potential
depolarization of pyramidal cells. The effect of interneurons is provided by a
model of the action of the spiny stellate cells and the basket cells. Such an ar-
chitecture has been considered a fundamental modular element. The module in
the model consists of two sub-modules and specific inhibitory neurons. The sub-
modules are coupled to each other through weak connections from the pyramidal
cells. Specific inhibitory neurons, which are considered to model the Martinocci
cells or the double bouquet cells, make synaptic contact with the dendrites of
the pyramidal cells in only one submodule.

The dynamics of the model were provided as a stochastic renewal with two
types of neural dynamics: one is the stationary dynamics that maintain the
neural state (to the previous state), and the other is the usual deterministic
neural dynamics such as the integrate-and-fire model, though we used its dis-
crete version in time. This stochastic dynamics was assumed to stem from the
stochastic release of synaptic vesicles under the influence of inputs. Thus, this
dynamics provides synaptic noise. We also introduced an additive noise in the
model equation, considering function of dendritic noise.

The model simulations exhibited various crucial dynamic features that have
been claimed to mimic fundamental functions associated with memory dynam-
ics, such as successive transitions between stored memories, the reorganization
of successive transitions after learning of new memories, the enhancement of
memory capacity and the enhancement of accessibility to memory. The dynamic
rule for the transitions, in particular, was chaotic, but critical. The skeleton of
the rule can be described by a one-dimensional circle map, f : I — I, f(z) =
x + asin(4nzx) + c(modl),x € I = [0,1], at the critical phase such that the
map makes a tangential contact with the diagonal line indicating the identity
f(x) = x, where x € I. For example, this occurs for a ~ 0.08 when ¢ = 0.1.



This critical situation often appears at the critical phase of intermittency that
is realized just at the onset of tangent bifurcation in one-dimensional map, or
saddle-node bifurcations in higher dimensional systems. This, however, does not
hold in the present case. The neural network model we used is controlled by many
parameters including various fixed coupling strengths and an updating rate of
learning. The similar transitions that are characterized by dynamics possessing
the same criticality as the case mentioned above are observed as changing the
values of such parameters as long as the chaotic transition occurs. Therefore,
we concluded [21] that this critical situation arises not from the bifurcation, but
from the self-organized criticality [48]. We further claim that this critical situa-
tion is structurally stable because it remains even after changing the bifurcation
parameters.

If cortical dynamics follow only deterministic dynamics such as the critical
circle map, no transitions from such critical fixed points can occur because the
critical fixed point x* derived from z = f(z)and f’(z*) = 1 is a typical Milnor
attractor [29], which is reached from a set of initial points with positive measure
(but possessing unstable direction). The critical fixed points obtained represent
stored memories or learned patterns, so no transitions between memories can
occur in this situation. A little additive noise plays a role in triggering such
transitions. Such a role for noise can be justified as a mechanism of CI. This
issue will be discussed below.

CI can be characterized by several indices. Auto- and cross-correlations de-
cay slowly, following the power law. Related to these quantities, time-dependent-
mutual information follows an exponential decay or a power decay. Taking ac-
count of the dynamic storage of information in the network of nonuniform chaos,
a macroscopic network consisting of the elemental networks that produce CI
may retain input information. An N-dimensional dynamical system possesses
an N-tuple of Lyapunov exponents, the ‘Lyapunov spectrum’, each of which in-
dicates a long-time average of the eigenvalues of the products of the Jacobian
matrices, where each Jacobian matrix describes a time evolution of the devi-
ation of trajectories from a basal trajectory in a linear range, associated with
the orthonormalization of state vectors. Thus, the indication of chaos, that is,
the presence of orbital instability, is the existence of at least one positive Lya-
punov exponent. In the presence of CI, the Lyapunov spectrum tends to include
many near-zero exponents. Recently, two important reports were published on
the Lyapunov exponents of CI. Sauer claims that the appearance of sustained
fluctuations of the zero-Lyapunov exponent is a characteristic of CI [49]. Tsuda
and Umemura claim that a further characteristic of CI is that even the largest
Lyapunov exponent converges in an extremely slow way, associated with large
fluctuations [31]. It should be noted that CI differ from simple chaotic transitions
in the sense that in CI, stagnant motions at attractor ruins or near Milnor attrac-
tors appear. This is characterized by a probability distribution of residence time
at attractor ruins: a power decay in the case of CI in the nonequilibrium neural
network [21]. To explain these characteristics of CI, we considered the chaotic
transitions between attractor ruins that are no longer attractors but can attract



some orbits. The closest concept to attractor ruin is an attractor in Milnor’s
sense. For this reason, we have been interested in a Milnor attractor.

Before defining Milnor attractors, let us remember the conventional definition
of an attractor, namely a geometric attractor. Let M be a compact smooth
manifold. Let f : M — M be a continuous map. We denote a geometric attractor
by A. A subset N of M satisfying f(N) C inter(N) is called a trapping region,
where inter(N) indicates an interior of N. The equation A = (72, ™ (N)
defines an attracting set. A geometric attractor is defined as a minimal attracting
set, that is, it is an attracting set satisfying a topological transitivity. Thus any
two points in a neighborhood of an attractor do not move far away from each
other.

Milnor extended the definition of attractor [29, 50]. Let us define the attractor
in Milnor’s sense. Let B be a Milnor attractor. Let p(B) be a basin of B, which
is defined as p(B) = {z|w(z) = B,x € M}. Here w(z) is an w-limit set of x. An
w-limit set is a set of w-limit points, where an w-limit point of = for f is a point
to which z converges under f (”’“)(x) as k goes to infinity, given the existence
of a sequence {ny} such that n; goes to infinity as k goes to infinity. A Milnor
attractor is defined as a set B satisfying the following two conditions.

1. pu(p(B)) > 0, where 4 is a measure that is equivalent to Lebesgue measure.
2. There is no proper closed subset B’ C B such that u(p(B)\p(B')) = 0.

A Milnor attractor can be connected to unstable orbits that are repelled from
the attractor. This situation in Milnor attractor differs from geometric attractors.
A Milnor attractor may thus provide a mechanism for allowing both transitions
from a state and returns to the state, which forms elemental behavior of what
we have described as CI. This is the reason why we are interested in the study
of this type of attractor.

3.2 Possible mechanisms of chaotic itinerancy

Let us discuss possible mechanisms of CI. It will be fruitful to discuss those with
a kind of symmetry.

(1) The case of symmetric systems

(a) 3-tuple (Chaotic invariant set, Milnor attractors, riddled basins)

Let f be a differentiable map, which acts on the phase space M, f : M — M.
Let ¢ be a certain group action which acts on M onto itself, ¢ : M — M.
Now we assume that the dynamical system commutes with the group action,
that is, fg = qf. Let S(q) be the invariant set under the action ¢, that is,
S(q) = {z|gz = z,2 € M}. Now take z from such an invariant set S(¢). By
gr = z, f(qr) = f(z) holds. By the commutation assumption, ¢(fz) = f(qz),
and hence ¢(fz) = f(x). The last equation means that f(z) is also invariant,
that is, f(z) € S(q). In other words, S(¢) is also an invariant set under the



dynamics f. It is useful to find an invariant set for the dynamics, becasue while
it is not necessary to find directly an invariant set under the dynamics, it is
sufficient to simply find invariant set under a group action. The latter is much
easier to perform than the former.

Let us consider a globally coupled chaotic map as a simple but typical ex-
ample of this kind of symmetric system.

= (1= 9f @) + 5 > JE), (7)
J#i

where n is a discrete time step, ¢ a discrete space indicating the position of each
individual map on the space, N the total number of maps, and each map f is
defined on the interval I. As a typical example, a chaotic logistic map is used,
f(x) = ax(1 —x), where a is fixed to produce chaos. All individual dynamics are
assumed to be identical. Let us take a permutation of maps on a discrete space
as a group action ¢. It is easily verified that the commutation assumption holds.
For, evolving the dynamics f for some fixed time 7" after a certain permutation
q of the maps on a discrete space is equivalent to permuting the maps by ¢ after
evolving the dynamics f for T-time steps.

The simplest invariant set in this model is the synchronized state of all ele-
ments, z,. Inserting z, into all xﬁf), ie., xg) = 2z, in the above model equation
(7), we obtain z,11 = f(zn), which is, by definition, chaotic. Hence, we have
a chaotic invariant set. There are many other synchronized states which are
more complex than this basic synchronization, which was defined as partially
synchronized state [19]. Partially synchronized state indicates, for instance, a
combination of synchronized N; oscillators and another synchronized N — N;
oscillators, where N is the system size. These partially synchronized states can
be an attractor. In this situation, if the Lyapunov exponent in the transversal
direction to the chaotic invariant set is positive, the basins of such attractors
have a topologically simple structure. However, if the transversal Lyapunov ex-
ponent becomes negative via a blowout bifurcation, then the flow toward the
chaotic invariant set must exist with positive measure, on the one hand, and
on the other hand, the flow toward attractors retains its positive measure. This
situation produces a riddled basin structure and the appearance of curious tran-
sitory dynamics between the attractors with intervening chaotic trajectories. It
should be noted that the attractors and also the chaotic invariant set are Milnor
attractors. In this respect, one of the mechanisms of CI in the symmetric case is
provided by the presence of the 3-tuple of chaotic invariant set, Milnor attrac-
tors and riddled basins, when an invariant set produced by symmetry is chaotic.
However, the situation that chaotic invariant set cannot form the basis of the
transition may appear. In such a case, it does not seem to be easy to permit
chaotic orbits to appear between Milnor attractors. Furthermore, there cannot
be a distribution of finite-time Lyapunov exponent in a transversal direction to
a fixed point or a periodic point, whereas it is possible for a chaotic invariant
set [30] and perhaps also for a torus, to exist.



Actually, we recently confirmed this matter by constructing a dynamic model [31].

The elementary dynamical system was made to possess a Milnor attractor of the
fixed point as a basic invariant set. The N-coupled system with nearest neighbor
interaction on a circle was considered. The transition of the CI did not occur
from the point Milnor attractors, but occurred as a chaotic transition between
tori. Here, a torus is produced by the interaction of point Milnor attractors.

(b) The possibility of the connection between homoclinic chaos and Milnor at-
tractors

Under a similar symmetry, the saddle connections that are structurally un-
stable in conventional dynamical systems can be structurally stabilized as Guck-
enheimer and Holmes [51] have proved. For simplicity, we consider the case of
a saddle connection between two saddles. Let us call them S; and S5. The con-
dition of stabilization for the connection from S; to Sy is that the sum of the
dimensions of the unstable manifold of S; and the stable manifold of Sy ex-
ceeds the dimension of the space. The symmetric dynamical system consists of
invariant subspaces. In each subspace, we can confirm this condition.

However, with only this kind of stabilization mechanism, chaotic transitions
cannot be proved. What is a mechanism for allowing chaotic transitions, based
on the saddle connections? Suppose Ss changes its stability in unstable direc-
tions to produce neutral stability. In other words, the saddle S5 is supposed to
change to become a Milnor attractor, S;,2. In these neutral directions, the orbits
move away from such a Milnor attractor. Those orbits may make a heteroclinic
orbit connecting to Sy, but this should be structurally unstable for the following
reason. The fact that the sum of the dimension n} of the unstable manifold of
S1 and the dimension nj of the stable manifold of Sy,2 exceeds the space di-
mension N, that is, n} + nj > N, indicates (N — n}{) + (N —n3) < N. The
last inequality means that the sum of the dimensions of the stable manifold of
S1 and of the unstable manifold of S,,2 cannot exceed the space dimension. In
other words, the intersection of the two manifolds makes only a measure-zero
set in the phase space. Thus, heteroclinic chaos must be expected in a neigh-
borhood of S7, as in the Shilnikov type of bifurcation. Chaotic itinerancy may
occur among the Milnor attractors via chaotic orbits if more saddles exist origi-
naly. This scenario might explain the chaotic switch between synchronized and
desynchronized states observed in several networks of class I neurons, which will
be discussed in the last section.

(2) The case of asymmetric systems

What can we state in the case without symmetry? If we start with the sym-
metric systems and then perturb them to lose that symmetry, then we will find
a quite similar situation to the symmetric case. Actually, asymmetric connec-
tions in a GCM, which is obtained by the perturbation of a conventional GCM,
produce similar characteristics to CI in the symmetric case. The nonequilibrium
neural network model for successive association of memories, which is one of the



pioneering models of CI, however, lacks the smooth continuation of the sym-
metric systems. Although the chaotic transition between fixed point attractors
in Milnor’s sense requires a little noise, the role of noise in this case seems to
be different from the symmetric case, because we did not find a riddled basin
structure for each memory state. Hence, the mechanism of CI in the asymmetric
case of this type might be different from the symmetric case. No clear theory has,
however, so far been proposed, although several concepts have been investigated
to discover its mechanism. At least three cases can be considered.

(a)Are saddle connections possible?

Because symmetry is lost, the space to be considered is a whole phase space,
not an invariant subspace. Now consider two saddles connecting with each other.
As discussed above, when the saddle connection cannot be stabilized, chaos ap-
pears. This consequence can be extended to the cyclic connections of m saddles,
that is, such connections are not structurally stable, and hence chaos will ensure.
However, this situation seems to lose stagnant motions such that the orbits stay
at attractor ruins or near Milnor attractors over a long time.

(b) Genesis of heteroclinic tangency within a chaotic invariant set
Heteroclinic tangency may bring about a neutral situation, and hence its
appearance may give rise to the degeneracy of zero-Lyapunov exponents if such
tangency becomes dominant, compared with transversality. Stagnant motions
are expected in a neighborhood of such tangency. This case must be studied in
details.

(¢)Milnor attractors associated with fractal basin boundaries

This is a highly hypothetical situation. It is known that fractal basin bound-
aries separates multiple attractors [52]. With respect to CI, Feudel et al. found a
CI-like phenomenon in the double rotor system with small amplitude noise [52].
In this system, many periodic orbits coexist, with the higher periodic orbits pos-
sessing very tiny basins which disappear under the influence of noise, leaving
only the low periodic orbits. A similar situation to this was found in the KIII
model by Kozma and Freeman [28], where because of fractal basin boundaries,
long chaotic transients appear before the system falls into a periodic orbit. Orbits
are trapped for some time in the vicinity of periodic attractors, but eventually
are kicked by noise into the fractal boundary region, where the orbits become
chaotic again, and consequently repeat the transitions between chaotic and pe-
riodic attractors. This is a noise-induced Cl-like phenomenon. We must consider
for the deterministic case: how could such attractors become a Milnor attractor?
This is still an open question.

4 A neuron-assembly model for transitory dynamics of
synchronization

In relation to neurocomputing, CI was found in many neural systems such as
nonequilibrium neural networks for successive recall of memories, the neural



network model for regenerating episodic memory [53,54], the dynamic associa-
tive memory model [44,21,55], the modified Hopfield model for the travelling
salesman problem [56], and the partially connected network for associative mem-
ory [57]. The concept of CI has been adopted to provide a dynamic interpretation
for the processes of perception and identification [11-13, 16, 28]. These processes
in animal and human behavior are often observed, accompanied by gamma-range
oscillations.

On the other hand, model studies on the dynamics of the class I neuron and
its network have recently been highlighted, in accordance with the accumulated
experimental data on various ion-channels. Furthermore, experimental evidence
has also accumulated on the ubiquity of gap junction couplings in a large number
of invertebrate brains and also in the mammalian neocortices. The origin of
gamma-range activity in neuron assemblies has also focused, in particular, on
the discovery of gap junction networks and their chemical-synaptic interactions
with principal cells like pyramidal cells.

An irregular change between synchronization and desynchronization was also
studied by using the Morris-Lecar model [58]. Whether or not this irregularity
stems from chaos has not been studied. Moreover, it is known that this irregu-
lar alteration of synchronized and desynchronized states only occurs in a very
narrow parameter region. An irregular and seemingly nonstationary alteration
between synchronized and desynchronized states has actually been observed in
animal experiments [12-14,17], although the observed activity level differs in
each experiment. This level difference may represent the difference of meaning
of synchronization.

Physiologically, the functions of class II neurons are characterized by Na-
and K-ion channels such as those described by the Hodgkin-Huxley equations,
whereas the function of class I neurons is further determined, typically by the
transient, slowly inactivating A- channels in addition to the Na- and K- chan-
nels. From a mathematical point of view, this functional difference can be re-
duced to and represented by the different type of bifurcations.

The phase space of a class II neuron, which is defined by the voltage of
membrane potential, and the levels of activity and inactivity in ion channels, is
characterized by a distorted vector field, thereby the large excursions of electric
activity indicating the production of a transient spike. The repetitive firings
of spikes are represented by a sustained oscillation of a limit cycle oscillator,
which is produced via Hopf bifurcation. The limit cycle starts as an infinitesimal
amplitude in the case of supercritical Hopf bifurcation, while on the other hand,
in the case of subcritical Hopf bifurcation, it starts from a finite amplitude. In
both cases, it preserves almost the same frequency over a relatively wide range
of bifurcation parameters, such as the input current. For a large deviation of the
bifurcation parameter from the bifurcation point, the frequency simply depends
linearly on the amplitude of the deviation.

The class I neuron is characterized by the interplay of a saddle-node bifurca-
tion with a Hopf bifurcation. Because of the presence of a saddle-node bifurca-
tion, the frequency of the limit cycle oscillator produced by the Hop bifurcation



is changed markedly by a slight change of the bifurcation parameter, such as
the input current. In other words, the dynamic range of the response becomes
extremely large because of the presence of the saddle. Various mathematical
treatments of the similarities and differences of both class I and II neurons and
of their models have been recently systematically reviewed [59].

We summarize below the chaotic behaviors obtained in published mathemat-
ical models of networks of class I neurons with the gap junction. Here the gap
junction couplings can be modeled by diffusion type couplings.

(1) Nearest neighbor couplings with gap junctions of Connor-type neurons:
there are no reports relating to chaotic behavior.

(2) All-to-all couplings with gap junctions of Morris-Lecar-type neurons:
the chaotic alteration of synchronized and desynchronized states over a very
narrow parameter region was observed [58].

Recently, we investigated [62] the dynamic behavior of the network consist-
ing of the nearest neighbor couplings with gap junctions of Morris-Lecar-type
neurons. We observed chaos over a very narrow parameter region. There have
not been any observations so far of chaotic alteration between synchronized and
desynchronized states.

We have, then, proposed a model of the cell assembly of a subclass, class I*, of
class I neurons with gap junction-type of couplings, as deduced from the Rose-
Hindmarsh model [60]. It was found that the spatio-temporal chaotic behavior is
a typical dynamic behavior in the gap junction-coupled class I neurons, whereas
pulse propagation as well as spiral wave propagation is typical of gap junction-
coupled class II neurons [61,62]. More details can be found in the article [63].
We have also proposed a simple neuron model with two variables, designed to
possess both bifurcations mentioned above. This model, called the pu- model, is
similar to the reduced model of Hindmarsh and Rose [64]. We found a chaotic
transition between synchronized and desynchronized states in the gap junction-
coupled p-model that has similar symmetry to the one mentioned above, that
is, the whole synchronized state constitutes an invariant subspace. Based on
numerical studies, we have further proposed a hypothesis that this transition
can be described as CI. We are now investigating the mathematical mechanism
of this chaotic transition, which will be published elsewhere.

5 Summary and discussion

We have reviewed the concept of chaotic itinerancy and several models of chaotic
itinerancy including the models of neural systems. We have also reviewed the
possibility of information processing with chaos and chaotic itinerancy, based on
the information theory of chaos. We have further discussed possible mechanisms
of chaotic itinerancy, although there are still several ambiguities that require
resolution.



We have finally introduced the most recent study on chaotic itinerancy. This
study investigates building a new framework for the mathematical modeling of
neural activity, based on the experimental findings of functional organization at
the mesoscopic activity level of cell assemblies. We found that a simple model
neural system consisting of class I* neurons with gap junction-type couplings
has transitory dynamics similar to chaotic switching between synchronized and
desynchronized states as observed in several biological neural systems.

There are varieties of desynchronized states including local metachronal waves
which are a weakly unstable form of partial synchronization. It is worth inves-
tigating whether or not the synchronized state can be described by a Milnor
attractor. Related to this, it will also be worth studying how metachronal waves
can act to destabilize the synchronized state. Although this neural system has
a symmetry, it does not seem to be possible to produce a riddled basin. There-
fore, another scenario must be considered for the presence of CI in this system.
Further studies are necessary to clarify the mechanism of the chaotic change of
synchronization.
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