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Abstract

Chaotic itinerancy is universal dynamics in high-dimensional dy-

namical systems, showing itinerant motion among varieties of low-

dimensional ordered states through high-dimensional chaos. Discov-

ery, basic features, characterization, examples, and signi�cance of

chaotic itinerancy are surveyed.

About a decade ago, chaotic itinerancy was proposed as a uni-
versal dynamical concept in high-dimensional dynamical systems.
This was based on numerical studies in coupled maps, optical tur-
bulence, and neural dynamics. One of the great surprises in \de-
terministic chaos" was the emergence of essential random behavior
even in low-dimensional dynamical systems. In the study of high-
dimensional chaos, however, it was soon recognized that there is
often a state that switches back and forth between fully developed
chaos and ordered behavior. Here fully developed chaos can be
approximated by `random motion' which may be described as the
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motion consisting of many degrees of freedom, and ordered behav-
ior can often be characterized by low-dimensional dynamics. On
the other hand, itinerant motion among varieties of ordered states
through high-dimensional chaotic motion is commonly observed.
The term for this is chaotic itinerancy.

During the past ten years, chaotic itinerancy has been suggested
to be relevant to optical turbulence, protein folding, coupled dy-
namical systems including globally coupled maps, dynamics of wa-
ter molecules, climate dynamics, population dynamics in ecosys-
tem, biochemical reaction dynamics in a cell, dynamic memory
in human and animal brain, among other topics. Applications of
chaotic itinerancy to dynamic control in robotics and to combina-
torial optimization problems have also been proposed. Recently,
mathematical foundation of the concept has been studied and has
developed especially in some ideal cases.

We will summarize the current status of the study of chaotic
itinerancy including its recent developments in this interdisciplinary
�eld and also provide a future scope in high-dimensional dynamical
systems.

1 Discovery of chaotic itinerancy

Chaotic itinerancy (CI) was independently discovered in a model of op-
tical turbulence (by Ikeda) [1], in a globally coupled chaotic system (by
Kaneko) [4, 5], and in nonequilibrium neural networks (by Tsuda) [2, 3],
and was proposed with unanimous cooperation as universal dynamics in a
class of high-dimensional dynamical systems. In CI, an orbit successively itin-
erates over ordered motion expressed by a few e�ective degrees of freedom.
Considering attraction to, and the residence at the ordered motion state, we
called each of such states \attractor-ruin". The motion at \attractor-ruins"
is quasi-stationary in the sense that it is close to that in low-dimensional
attractor.

After staying at one attractor-ruin, the orbit eventually exits from it.
This escape from an attractor-ruin stems from instability of the ruin. (see
Fig.1 for schematic representation).

For example, if the e�ective degrees of freedom is two, the dynamics are
in the vicinity of two-dimensional subspace in the original high-dimensional
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Figure 1: Schematic representation of chaotic itinerancy

phase space. Such low-dimensional motion is not described by a stable at-
tractor, even though orbits are attracted to its vicinity. After staying at an
attractor-ruin, an orbit exits from it. This exit arises from a certain kind of
instability.

With this instability the orbits enter into a high-dimensional chaotic mo-
tion, losing coherence or correlation among variables. This high-dimensional
dynamic state is also quasi-stationary, although after this chaotic wandering
the orbit is again attracted to one of the attractor ruins which again pos-
sesses low dimensionality. In other words, there are some 'holes' connecting
to attractor-ruins from the high-dimensional chaotic state. Once the orbit
is trapped at a hole, it is suddenly attracted to one of attractor ruins, i.e.,
low-dimensional ordered states.

Now, a mechanism of the above instability should be solved. In this focus
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issue, several possibilities for the mechanism are addressed.

2 Characteristics of chaotic itinerancy

The basic characteristics of CI are as follows:

2.1 Existence of low-dimensional ordered motion (at-
tractor ruin)

To exhibit CI behavior, there are several invariant subsets that are in low-
dimensional space in the phase space. These subsets work as attractor-ruins.

In high-dimensional phase space, there can be stable and unstable (in-
variant) manifolds connecting each of invariant sets. To realize attraction
to the neighborhood of this invariant set, the dimension of stable manifold
must not be negligible in a whole space, in other words, at least a Lebesgue
measure of the basin of such an invariant set is positive. On the other hand,
this low-dimensional manifold cannot be an attractor in the whole space
since there is at least non-zero dimensional unstable manifold along which
the orbits leave the neighborhood of such an invariant set. In this regard, it
is natural to call the geometric structure representing such low-dimensional
ordered motion an attractor ruin.

In dynamical systems having some symmetry, there exists the case that
a whole system can be decomposed into several low-dimensional invariant
subspaces, according to which the whole dynamical behavior can be char-
acterized by the union of the behaviors in subspaces. As is clearly seen by
the de�nition of invariant subspace, once the motion is restricted to this
low-dimensional subspace, the orbit stays there.

As a typical example, let us consider a globally coupled system consisting
of identical elements showing chaotic dynamics (see x3 for details). Syn-
chronization of all elements provides a chaotic state. This chaotic state is
invariant under any permutation of elementary maps. Since this group ac-
tion commutes with the dynamical system, this chaotic state is also invariant
under temporal evolution. Furthermore, there could be states obtained by
partial synchronization, i.e., synchronization only over some elements. Then,
each of the states constitutes an invariant subspace. Some of these state can
have positive Lebesgue measure of the basin of attraction. If this invariant
set is unstable in a transversal direction to its invariant subspace, then the
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orbit is directed to other invariant subspaces from such chaotic invariant set.
In such a case, wandering dynamics is observed as CI, and each invariant set,
i.e., attractor restricted to each invariant space, is an attractor ruin.

2.2 Escape from low-dimensional motion through re-
stricted path

After the escape from low-dimensional states, the motion becomes high-
dimensional. Since the region that an orbit escaping from an attractor ruin
wanders is restricted in spite of this high-dimensionality, the itinerancy from
one attractor ruin to another is distinct from random hopping among at-
tractors with a help of external perturbations. On the other hand, due to
this restricted path, the system maintains memory concerning the motion
on attractor ruins which the orbit previously visited, and hence the history-
dependent orbits are generated.

As mentioned above, dynamics for an exit from an attractor ruin is not
represented by simple noise motion. An aspect of chaotic motion for the es-
cape from an attractor ruin, however, may be expressed by state-dependent
noisy dynamics. Then, it may be possible to discuss this aspect, by using a
state-dependent noise, as a �rst-step approximate description. For example,
escape statistics from an ordered state may be discussed by using multiplica-
tive noise, where the noise strength explicitly depends on the state. In the
present issue, Nakao and Mikhailov discusses this aspect.

2.3 Importance of marginal mode

In CI, the attraction to low-dimensional motion and the escape from it are
somewhat balanced. There are two extreme cases. If the former tendency
wins, the motion falls onto a low-dimensional attractor, while if the latter
wins, a high-dimensional irregular motion appears. For CI, balance between
the two tendencies is required.

This balance leads to neutral stability of some modes. The stability of
this kind can be described by the Lyapunov spectra. As far as we have
veri�ed in numerical simulations of several high-dimensional dynamical sys-
tems exhibiting CI, there appear many exponents whose values are close to
zero. The accumulation of the Lyapunov spectra to null exponents is one
characteristic feature common to CI we have studied so far (see e.g., [9]).
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This characteristic leads to a new type of instability that Sauer stud-
ies in this focus issue. He focuses on the study of a two-dimensional map
with extremely slow convergence or non-convergence of zero-Lyapunov ex-
ponent and its large 
uctuation. Although chaotic itinerancy is a concept
in high-dimensional dynamical systems, Sauer's model expresses one of es-
sential characteristics of chaotic itinerancy. Sauer investigates the possibility
of sensitive dependence on additive noise to this skeleton model and found
the scaling law for natural measure. This suggests that the break of global
stability is one of essential characteristics of chaotic itinerancy.

In CI large 
uctuations of null Lyapunov exponents are expected, as Sauer
treats in his article. Indeed, 
uctuations in the largest Lyapunov exponents
are addressed as a typical case of CI in this focus issue by Tsuda and
Umemura.

3 An explanation of chaotic itinerancy in a

symmetric dynamical system: A globally

coupled map

One of the simplest models for high-dimensional dynamical systems is glob-
ally coupled dynamical systems. In particular, \globally coupled map" (GCM)
consisting of chaotic elements [4] has been extensively studied, as a simple
prototype model for chaotic itinerancy. A standard model for such GCM is
given by

xn+1(i) = (1� �)f(xn(i)) +
�

N

NX

j=1

f(xn(j)) (1)

where n is a discrete time step and i is the index of an element (i = 1; 2; � � � ; N
= system size). The map f(x) is chosen so that the dynamics xn+1 = f(xn)
shows chaos. In particular, the logistic map f(x) = 1� ax2 is often adopted.
The model is just a mean-�eld-theory-type extension of coupled map lattices
(CML) [8].

Through the average interaction, elements tend to oscillate synchronously,
while orbital instability leads to destruction of such coherence. In the former
limit, all elements oscillate coherently ( Coherent phase), while elements
are completely desynchronized in the other limit of strong orbital instability
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(Desynchronized phase). Between these cases, there is a case that ele-
ments split into clusters in which they oscillate coherently. Here a cluster is
de�ned as a set of elements in which x(i) = x(j). Attractors in GCM are
classi�ed by the number of synchronized clusters k and the number of ele-
ments for each cluster Ni. When the parameter characterizing nonlinearity
(e.g., a in the above logistic map case) is not large, observed attractors have
a small number of clusters k. If the number of cluster k is small, the cor-
responding orbit is attracted to just low-dimensional attractor, i.e., at most
k-dimensional. As the parameter is increased, these low-dimensional states
lose the stability. If the instability is not large enough to lead to complete
de-synchronization, the system often shows chaotic itinerancy. Here, low-
dimensional attractor-ruins are given by a state with few number of clusters.

As an example, consider the case that this attractor ruin is given by a
two-cluster state. Then the system is attracted to neighborhood of two-
dimensional plane (x1; x2) in the N -dimensional phase space. In CI, after
the orbit stays in the neighborhood of this two-dimensional plane it leaves
out of the plane. During the exit process, often the orbit approaches almost
coherent state, i.e., the state with x1 � x2. In this GCM, when elements are
totally synchronized, the dynamics are approximately represented by just a
single map xn+1 = f(xn). Here this map shows stronger orbital instability
than a clustered state with a few clusters. Hence as the orbit approaches this
one-dimensional subspace in the two-dimensional subspace, it exists from
the original two-dimensional subspace. ( see also schematic Fig.2). It is
interesting to note that the e�ective degrees of freedom decreases before
high-dimensional chaotic state appears. An explicit experimental realization
of globally coupled dynamical systems is given by Kiss and Hudson in the
present issue, as will be described later.

Let us reconsider basic characteristics in CI in this example. First, in
this globally coupled dynamical system, invariant subspace is clearly de�ned
from symmetry, whereby one can de�ne a low-dimensional attractor ruin.
On the other hand, high-dimensional chaotic motion is given by desynchro-
nized dynamics. Second, paths to go out from the attractor ruin are given
by orbits passing through further restricted subspace among the subspace
for the attractor ruin. Third, when CI is observed, de-synchronization and
synchronization are balanced over long term. This leads to the accumulation
of null Lyapunov exponents, as discussed in [9].

As discussed above, each attractor-ruin in GCM is given by clustered
state, characterized by the number of elements in each cluster (N1; N2; N3; :::; Nk).
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Figure 2: Schematic representation of attraction to, and escape from, an attractor ruin

in chaotic itinerancy

Hence stability analysis of clustered states gives a basis for the study of CI in
GCM. Maistrenko and Panchuk analyzed the stability of clustering solu-
tion, as well as its basin in detail. In particular, they analyzed basin structure
of partly desynchronized attractor, i.e., clustering with (N1; 1; 1; :::; 1) with
N1 � 1.

To study attractor ruins, we need to deepen our understanding in long-
lasting transients within high-dimensional dynamical system. By using one-
body distribution of the each value x for each element also, Chawanya
analyzed existence of such quasi-stable state and the transient length in a
GCM consisting of tent maps.
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4 Milnor attractor as a possible representa-

tion of attractor ruin

An attractor ruin in CI possesses structure of both global attraction to it from
high-dimensional manifolds and escape from it through restricted region of its
neighborhood. This structural feature is similar to that of a Milnor attractor.
In this section, we discuss possibility to characterize an attractor ruin with
a Milnor attractor[10, 11].

Milnor attractor is de�ned as a (minimal) set that has positive measure
of its basin of attraction [12]. This de�nition does not exclude the possibility
that the orbits leave from the attractor, namely, the presence of unstable
manifolds of the attractor. This is clearly excluded in the de�nition of con-
ventional geometric attractor. Therefore, Milnor attractor is an extended
concept of attractor and includes the conventional geometric attractor.

In this way, Milnor attractor possessing unstable manifolds is unstable
by perturbations of arbitrarily small size, but it still globally attracts typical
orbital points. Here, we use the term Milnor attractor, only if it does not
belong to the geometric attractor. If this Milnor attractor is chaotic, the
basin is considered to be riddled [14]. This is the case for the present GCM
model.

Existence of Milnor attractor in a symmetrically coupled system was �rst
noted by Pikovsky and Grassberger[7]. The authors discuss a coupled map
of two identical elements. Still, the Milnor attractor is not so common in
a coupled system with few elements. Indeed, since Milnor attractor in the
above sense is not asymptotically stable, one might, at �rst sight, think that
it is rather special, and appears only at a critical point like the crisis in the
logistic map[12]. Often, such critical points exist only at speci�c points in
the parameter space. Hence Milnor attractors might look non-generic.

However, to our surprise, Milnor attractors are rather commonly observed
around the border between the ordered and partially ordered phases in a
globally coupled map [10, 11], when the number of degrees of freedom is
larger than 5 � 10. It is suggested that the Milnor attractors are prevalent
when the degrees of freedom having instability, globally coupled each other,
is larger than 5 � 10[17]. This number 5 � 10 is also termed as magic
number 7 � 2, borrowing the terminology in psychology[18]. We will come
back to this problem at x6.

A Milnor attractor is invariant under the group action, say substitution of
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elementary individual systems, and is invariant under the dynamics because
of commutability between the dynamics and the group action. Therefore, a
Milnor attractor forms an invariant set and can be an attractor ruin. In this
case, the presence of Milnor attractor is closely related to the appearance of
riddled basin.

Note that the Milnor attractors satisfy the condition of the above ordered
states constituting chaotic itinerancy. Some Milnor attractors that we have
found maintain global attraction, which is consistent with the observation
that the attraction to attractor ruins in CI is global starting from a high-
dimensional chaotic state. Here, note that attraction of an orbit to precisely a
given attractor requires in�nite time in di�erentiable dynamical systems, and
therefore before the orbit is completely attracted to a given Milnor attractor,
it may be kicked away. Then, the long-term dynamics can be constructed as
the successive alternations of the attraction to, and the escape from, Milnor
attractors. Hence the dynamics is represented by transition over Milnor at-
tractors. This transition is generally asymmetric: when there is a connection
from a Milnor attractor A to a Milnor attractor B, but not necessarily from B
to A. The total dynamics is represented by the motion over a network, given
by a set of directed graphs over Milnor attractors. In general, the `ordered
states' in CI may not be exactly Milnor attractors but can be weakly desta-
bilized states from Milnor attractors. Still, the attribution of CI to Milnor
attractor network dynamics is expected to work as one ideal limit.

To make itinerancy over Milnor attractors recurrently, there should be
multiple Milnor attractors in the system, and with time evolution, Milnor
attractors should be visited repeatedly.

A system with multiple Milnor attractors is easily constructed by coupling
dynamical systems, each of which produces a Milnor attractor. Using a CML
constructed as such, Tsuda and Umemura investigated the role of Milnor
attractor. They discovered that the CML with a system size 5, which is an
intermediate case of CML and GCM in its e�ective coupling, produces CI via
a \higher order" Milnor attractors, while a CML with a larger size produces,
if any, only transient CI. Here, global coupling is necessary to produce CI
via Milnor attractors, while the result also suggests the plausibility of the
above magic number 7 � 2 with respect to universal observation of Milnor
attractors.

Existence of Milnor attractors in CI is not restricted to coupled map
systems. In neural network model by Tsuda, the Milnor attractor is likely to
exist. Indeed, the observation of 'critical circle map' in the collective activity
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of neurons in the model [2, 3] is a possible manifestation of it.

5 Classi�cation of CI in a general case

5.1 With regard to symmetry

In the last section, we have discussed CI based on a study on a dynamical
system with symmetry. In globally coupled dynamical system of identical
elements, there is permutational symmetry, while in a lattice system (CML),
there is translational symmetry. In general high-dimensional dynamical sys-
tems, such symmetry does not exist. Still, the study with the symmetric case
may be relevant to a general case also.

Case I: With some transformation, the system may be mapped into
a symmetric case. Let us consider a coupled dynamical system with non-
identical elements. In this case, with some nonlinear transformation of vari-
ables, discussion for the symmetric case will be applicable. Consider phase
synchronization, for example. Elements are not completely synchronized,
but after some transformation of variables, they are regarded to be synchro-
nized. Such generalization will be relevant to CI, in particular, for a globally
coupled dynamical system with heterogeneous elements, including a coupled
dynamical system consisting of elements with di�erent time scales.

The paper of Fujimoto and Kaneko studies CI in a coupled dynamical
system with distributed time scales (see also [19] for CI with distinct time
scales). The model consists of elements with the same dynamics except their
time scale. It is mapped to identical elements with the transformation of
time scale by each. This coupled chaotic system with multiple time scales
exhibits chaotic itinerancy with a mechanism of bifurcation cascade. Fast dy-
namics successively change slow dynamics, so that correlation is transferred
to elements with a huge time scale di�erence. The work by Fujimoto and
Kaneko opens a way to study chaotic itinerancy in frequency space.

The above theoretical paper is also considered to give a model for dynamic
e�ect of this intermingled time scales, studied by Kay for neural activity, as
will be discussed in x7.4.

Case II: Intrinsically asymmetric case
Generally, invariant subspace is not directly de�ned by the symmetry.

In a typical situation for generating CI in this case, invariant set possesses
both stable and unstable manifolds (which are invariant) and the transition
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between invariant sets can occur via these invariant manifold.

5.2 From hypercycle to chaotic itinerancy

As a transition over low-dimensional invariant sets, heteroclinic cycles are
common with CI, and may be important for another possible mechanism of
CI. In the heteroclinic cycle, an orbit visits successively the neighborhoods
of the saddle-type �xed points. Here an orbit approaches a �xed point from
the direction of its stable manifold, and after approaching close neighbor-
hood of it, the orbit goes out of it through its unstable manifold and then
asymptotically approaches a stable manifold of another �xed point. In other
words, one unstable manifold of a �xed point is a stable manifold of another
�xed point, and these manifolds form a cycle to switch among �xed points.
Existence of such heteroclinic cycles has been discussed most extensively in
a class of population dynamics model[20].

However, in such a case if the heteroclinic orbits become chaotic or not
is problematic. Heteroclinic cycles originally studied are non-chaotic and
structurally unstable and are not suitable for a mathematical framework
for chaotic itinerancy. It is possible to introduce chaotic dynamics to it as
studied, for example, by Chawanya[21]. In the present issue, Ashwin et
al. introduced a model for robust cycling between chaotic and equilibrium
saddles. They explicitly design a system for robust cycle between invariant
sets and saddles. In general, it will be important to study a robust cyclic
process, by "thickening" connection paths among invariant sets, so that the
motion can include high-dimensional chaotic dynamics. Such system gives
one prototype of CI.

In general, saddle-type structures in phase space are important to chaotic
itinerancy. In relation, the saddle-type structure in in�nite dimensional sys-
tems is studied in this issue by Nishiura, Teramoto and Ueda. Chaotic
itinerancy that appears in a dynamical system with continuous space and
time is analyzed by the interactions of saddle-type structures in phase space.
A speci�c saddle-type structures has been discovered and analyzed. They
studied a transitory dynamics of particle-like patterns in Ginzburg-Landau
equation, the Gray-Scott model and a three-component reaction di�usion
model, and suggest that localized steady or time-periodic saddle-type struc-
tures, called scattors, may play an important role in chaotic itinerancy in
many PDE systems.

Freeman studies in this focus issue human EEG with his 1x64-electrode

12



system that is a nontrivial extension of 8x8-electrode system that he invented
for the previous studies of animal olfactory bulb. Freeman has discovered a
curious instability that reveals sudden jumps in phase which are synchro-
nized in a very wide range. Such jumps are asynchronous across the midline
separating the left and right hemispheres and also across the central sulcus
separating the frontal and parietal lobes. The time duration between sudden
jumps changes chaotically. This indicates that chaotic transition between
synchronized states occurs in some areas of the cortex and also between
asynchronous states in other areas. Since a transition is very sharp, this may
be related to the transition by the appearance of heteroclinic cycle. If the
existence of heteroclinic orbits is veri�ed, the present �ndings of Freeman
could provide a new example of CI.

5.3 Classi�cation by the form of ordered motion

Each motion at an attractor ruin is not necessarily chaotic. In some case, it
can be �xed point, limit cycle, or quasi-periodic. For example, CI observed in
Otsuka et al.'s paper is based on quasiperiodic and frequency locking states.
If the �xed point is ordered motion, noise is necessary to make a switching
as is discussed in nonequilibrium neural network model by Tsuda[2].

The noise may play a role of producing positive measure of support of
ordered motion which allow the riddled basin to appear. Kozma treats KIII
model originally introduced by Freeman, and discusses a type of \attractor
crowding". Kozma also found a similar noise e�ect to that Liljenstrom found
in a model of the olfactory system. Chaotic itinerancy with multiplicative
noise that was introduced in the form of stochastic renewal of neural dynam-
ics was studied by Tsuda et al about �fteen years ago. Statistics of bursts
from a stationary state by multiplicative noise is also studied by Nakao and
Mikhailov.

A similar transition phenomenon in the system with riddled basins has
also been found by Grebogi et al [15], by introducing additive noise to such
a system. Kozma in the present article addresses the role of additive noise
in the \attractor crowding" of KIII model. He discovered a stabilization of
chaotic orbits by noise and also the appearance of maximum in signal to
noise ratio in the chaotically itinerant state.
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5.4 Degree of path

There seem to be several types of \chaotic itinerancy" covered by this general
de�nition for it. One classi�cation may be possible according to the degree
of correlation between the ordered states visited successively. If the paths for
the transitions between the ordered states are narrow, the correlation is high
and the probabilities for visiting the next ordered state are rather low. On
the other hand, the correlation is low if the memory on the previous sates is
lost due to high-dimensional chaos during the transition.

1) Cases with strong correlation:
If the connectivity among degrees of freedom is sparse, the path can often

be very much restricted to some speci�c portion in the total phase space.
For example, consider a system with local coupling in space such as the
one typically realized in coupled map lattice(CML). Switching over several
traveling wave patterns is observed in this CML [16], where the traveling wave
is a global phenomenon covering all lattice points. Hence, the switching of
wave patterns can be interpreted as an example of chaotic itinerancy. In this
case, although the transition occurs through a chaotic state, its dimension
is too low to allow for a variety of destinations. Indeed, the transition over
wave patterns is rather limited. It seems that CI in optical trubelnce by
Ikeda[1] also belongs to this class.

The extreme case for low-dimensional path is heteroclinic cycle, where
connections are made only by one-dimensional unstable and stable manifolds.
Chaotic itinerancy realized by 'thickening heteroclinic cycle' as discussed in
x4.2, has still limited path connection, and belongs to this case with strong
correlation.

2) Cases with weak correlation:
For the chaotic itinerancy in the GCM, there is a huge number of invari-

ant sets, given by the clustering condition. The chaotic itinerancy occurs
among such a huge number of possible attractor ruins. If the orbit passes
through high-dimensional desynchronized state, and it lasts relatively long,
there remains little correlation between two successive attractor ruins. The
memory of the previous state decays during the transition.

3) Cases with medium correlation:
In GCM, all elements are connected to all others, which make paths rather

high-dimensional. By restricting the connection, the path has more restric-
tion. For example, Nozawa studied a GCM where the coupling strength
among the elements is not uniform but sparse, by borrowing Hop�eld-type
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neural network[22]. As a result, the number of \attractor ruins" is reduced
and the paths between such attractor ruins are much limited. Hence there is
larger correlation between the patterns before and after a transition. Such
restriction in the path is also imposed in Tsuda's nonequilibrium neural net-
work model[2], which leads to long-time hysteresis over retrieved patterns.

In these chaotic itinerancy models, the unstable manifold of the attractor
ruins has a relatively low dimension. In this respect, the correlation between
memory states may determine the dimensionality of the transition in such
a way that a strong correlation generates a low-dimensional transition path,
whereas a high-dimensional transition path is generated in a weak correlation
case.

6 Ubiquity of CI in a \high"-dimensional sys-

tem

Through numerical studies for a variety of models with many degrees of free-
dom, chaotic itinerancy seems to be ubiquitous, when the system is neither
too disordered losing correlation among degrees of freedom nor too ordered
attracted to low-dimensional attractors.

One question here remains: How many dimensions are required to be
"suÆciently high-dimensional"? How high should the connection among de-
grees of freedom be? Or, in other words, to what point of the argument so
far, dimensionality or connectivity is relevant?

There is not decisive answer as yet, although relevance of combinatorial
complexity is discussed in [17]: As the number of coupled elements N in-
creases, the combinatorial variety of grouping (clustering) of these degrees
of freedom increase with the factorial order of N (say (N � 1)!), while the
volume of phase space expands only exponentially. Hence the combinato-
rial variety surpasses the increase of phase space volume at some N , beyond
which the distance between an attractor and its basin boundary may drasti-
cally decrease, leading to the increase of fraction of Milnor attractors. Now,
several attractor-ruins are formed, and CI may be rather commonly observed.

Let us elaborate the above discussion a little bit. Consider a one-dimensional
phase space, and a basin boundary that separates the regions of x(1) > x� and
x(1) < x�, while the attractor in concern exists at around x(1) = xA < x�,
and the neighboring one at around x(1) = xB > x�. Now consider a region
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of N -dimensional phase space xA < x(i) < xB. If the region is partitioned
by (basin) boundaries at x(i) = x� for i = 1; � � �N , it is partitioned into 2N

units. Since this partition is just a direct product of the original partition
by x(1) = x�, the distance between each attractor and the basin boundary
does not change with N .

On the other hand, consider a boundary given by some condition for
(x(1); � � � ; x(N)), represented by a (possibly very complex) hyperplane C(x(1),� � � ; x(N)) =
0. In the present system with global couplings, many of the permutational
changes of x(i) in the condition also give basin boundaries. Often, the condi-
tion for the basin can also have clustering (N1; � � � ; Nk), since the attractors
are clustered as such. Then the condition obtained by the permutation of
C(x(1); � � � ; x(N)) = 0 gives a basin boundary also. The number of such seg-
ments of the boundaries increases combinatorially with N , roughly speaking
in the order of (N�1)!, when a variety of clusterings is allowed for the bound-
ary. Now the N -dimensional phase space region is partitioned by O((N�1)!)
basin boundary segments. Recalling that the distance between an attractor
and the basin boundary remains at the same order for the partition of the
order of 2N , the distance should be drastically decreased if (N�1)! surpasses
2N . Since for N > 5, the former increases drastically faster than the latter,
the distance should decrease drastically for N > 5. Then for N > 5, the
probability that a basin boundary touches with an attractor itself will be
increased. Since this argument is applied for any attractors and their basin
boundary characterized by complex clusterings having combinatorial com-
plexity. Although this explanation may be rather rough, it gives a hint to

why Milnor attractors are so dominant for N
>
� (5 � 10). In this sense, the

dimension necessary for prevalence of CI could be \magic number seven plus
minus 2"[17].

As discussed above, attractors are sometimes crowded in the phase space
if the dimension of the phase space is "high". Freeman and his colleagues
discuss this attractor crowding, in a model of the olfactory bulb, so called
KIII model. A mesoscopic system in each di�erent hierarchy is studied by
Freeman, Kozma and Kay also in this issue.
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7 Chaotic Itinerancy in nature

7.1 Chaotic itinerancy in Hamiltonian system:relevance
to energy conversion

So far we have discussed CI in dissipative system, where attractor concepts
are important. To a Hamiltonian system, the attractor concept is not ap-
plicable. Still, itinerant motion over several quasi-stationary states is often
observed in a Hamiltonian system with many degrees of freedom. There, the
system in concern is con�ned at a state with some ordered structure over long
time span, while chaotic motion with a small amplitude remains. At this or-
dered structure, degrees of freedom are separated into groups, and elements
(modes) within each group show highly correlated motion. On the other
hand, motions of elements belonging to di�erent groups are approximately
disjointed. After residence at one of such ordered states, degrees of freedoms
that were roughly disjointed start to interact, which makes the system leave
out of the ordered state. There, with mode couplings, stronger chaotic mo-
tion appears, which later is replaced by another ordered state suppressing
strong chaos and separation of degrees of freedom. In this sense, it is fair to
adopt the term chaotic itinerancy for such Hamiltonian dynamics also.

This type of CI was �rst discussed by Konishi and Kaneko[23], in a glob-
ally coupled pendulum system, while similar dynamics were soon observed
in self-graviton system[27].

In some sense, one might think that such itinerancy over several ordered
states is just thermal hopping dynamics over energy local minima in a po-
tential landscape, as was traditionally discussed. Although both the CI dy-
namics here and the standard hopping process are common as transition
phenomena over states, the transition in CI is clearly distinguishable from
a thermal activation process. CI is due to deterministic dynamics with sev-
eral degrees of freedom, and not by random motion from heat bath. In the
itinerant motion, the energy is not dissipated to whole degrees of freedom
as "heat'. This feature may bring about deviation from traditional Arrhe-
nius law, i.e., the transition probability with exp(��E=kT ) form for the
switching from one state to another.

Hence, chaotic itinerancy may give a new insight to problems so far dis-
cussed just as random hopping among several metastable states over energy
barrier. In contrast to this standard viewpoint, there can be a directional
motion for the switching from one state to another in CI. Itinerant motion
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in molecular dynamics of glass is studied by Shinjo[24] from this viewpoint,
while molecular dynamics simulation of water again suggests non-random
itinerancy over several inherent structures[25]. Recently, dynamics of surface
atoms penetrating into micro-clusters is investigated by Kobayashi et al.[26],
where rapid di�usion of atoms is observed as a universal feature of small
clusters, and is discussed from a viewpoint of chaotic itinerancy.

Macromolecules like protein may have complex dynamics within, and
are also candidates for a system to exhibit CI. Indeed, protein folding was
discussed from this viewpoint by Matsumoto, while a simpler model for it
is included in this issue by him. He has found unidirectional motions with
high probability in the folding process, in a Hamiltonian system of double-
well applied random perturbations. He discovered a dynamical mechanism
of the appearance of this non-ergodic motion.

Directional motion in CI may also give a robust mechanism for energy
conversion. This problem is discussed by Nakagawa and Kaneko in the
present issue, who describe conversion of injected energy to a certain directed
motion in a model inspired by molecular motor experiments studied as an
elementary process of muscle contraction. They simulate a simple Langevin
dynamics with several degrees of freedom and have found relevance of tran-
sient chaotic behavior to energy conversion.

Both of the two systems are dynamic mesoscopic system in the sense that
a macroscopic state cannot be represented by a simple order parameter but
a certain time-dependent ordered motion at a mesoscopic level is important.
These models suggest that CI plays an essential role in the energy transfer of
macromolecular systems by activating the process of conversion from ergodic
motion to non-ergodic motion. In general, it will be important to study
functions of enzyme or molecular motor from the viewpoint of CI.

7.2 Chaotic itinerancy in physico-chemical experiments

A variety of physical and chemical systems with many degrees of freedom
shows itinerant motion over several quasi-stable ordered states, through ir-
regular motions associated with many degrees of freedom. So far, in the
traditional picture taken for such phenomena, one assumes each state as
a "metastable state" as in the local minimum of potential landscape, and
then assume the switching over the states as random hopping over bar-
riers triggered by (thermal or other) noise. However, in recent observa-
tions, there are several phenomena that do not �t well with such stan-
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dard "static"+"stochastic" picture. These phenomena may be understood
as chaotic itinerancy.

An example in physics was �rst presented in optics with excitations of
multiple modes. Indeed, one of the �rst discoveries of chaotic itinerancy
was due to theoretical model of optical turbulence, as mentioned. Later,
further examples are found both theoretically and experimentally[28, 29, 30].
In this present issue, Otsuka et al. studied dynamics of globally-coupled
three-mode laser, and observed self-induced switching over several modes of
oscillations.

Global coupling often lead to itinerant dynamics. An example is given by
Nasuno's experiment on quasi-two-dimensional gas-discharge system. In the
system, localized, luminous spots are formed. With the increase of discharge
current, they form a 'molecular-like cluster', which, with further increase
of the current show switching over several quasi-stable internal structures,
with intermittent rearrangement of mutual positions of spots. Whether this
switching process is understood as chaotic itinerancy or not is yet open, but
this itinerancy, at least, seems rather di�erent from random hopping over the
local structures.

One of the most beautiful experimental demonstrations of globally cou-
pled chaotic systems is an array of coupled electro-chemical oscillators, de-
veloped by Kiss and Hudson[31, 32]. Previously they showed that the sys-
tem shows coherent, ordered, and desynchronized phases, with the change
of coupling parameter among arrays, where clusters of elements with mu-
tual coherent oscillations are formed. In the paper in the present issue,
they showed experimental demonstration of chaotic itinerancy, by measuring
the precision-dependent clusters and analyzing them as hierarchical cluster
trees, as introduced in [4]. Change of e�ective degrees of freedom is directly
computed. Their results show remarkable similarity with those observed in
globally coupled maps.

As 
uid turbulence provided a variety of examples for chaos, it can also
be an experimental testbed for chaotic itinerancy. In a coupled map lattice
model for Rayleigh-Benard convection, switching over several roll patterns
is observed and characterized as chaotic itinerancy[33]. There are also cor-
responding experimental results, although detailed analysis as chaotic itin-
erancy is not yet published. In electrohydrodynamic convection of nematic
liquid crystal, Sano et al. [34] observed formation and collapse of target
patterns, that may belong to chaotic itinerancy over several patterns also.

At a much larger scale, atmosphere dynamics may exhibit chaotic itin-
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erancy. Indeed, by using an atmospheric model with realistic topography,
Itoh and Kimoto[35, 36] found a CI phenomenon, in which the atmosphere
system stays within attractor ruins for a long time, moving promptly among
them. They found preferred routes in transitions among attractor ruins. In-
terestingly, these characteristics coincide well with those of weather regimes
in the real atmosphere.

7.3 Chaotic itinerancy in biology

Biological system is often composed of many dynamic elements. A multi-
cellular organism consists of cells with internal biochemical reaction, while
an ecosystem consists of populations of several species. Due to dynamics
of elements, they sometimes synchronize, or form a cluster of synchronized
elements, or di�erentiate into several clusters. Sometimes, these dynamics
are not stationary, but the clusters may change in time. There CI may ap-
pear, and can be relevant to dynamics of mutual relationship, to provide
evolvability, and to sustain diversity[6, 37]. Although decisive experimental
demonstrations are not yet available, several theoretical models are studied,
to imply possible relevance of chaotic itinerancy for evolvability of biochem-
ical reaction dynamics[38], di�erentiation from stem cells[39], and diversity
in an ecological system[46] (see also x8.2).

7.4 Brain

Chaotic itinerancy has also been addressed in neurophysiological experiments
with animals and even human. Freeman established the presence of chaotic
behavior, its realization by noise through attractor crowding and its func-
tional signi�cance. The transition between multiple wings of quasi-attractors
during a motivated perception process and also during learning was inter-
preted by chaotic itinerancy. Kay observed an itinerant behavior in local
�eld potential as characterized to be non-stationary transitory dynamics in
the animal cognitive and behavioral experiments with rats brain including
an entire olfactory system and hippocampus. Recently, Freeman discovered
a curious transition phenomenon in human EEG. He tries to interpret, in
this issue, the sharp transition in terms of chaotic itinerancy, as we already
mentioned. Kay found a dynamics at three time scales: slow, fast, and in-
termediate modes. Among others, medium time scale events unpredictably
change with a strong correlation with animal performance. Kay proposes
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in the present issue the folding of di�erent time scales as a mechanism for
chaotic itinerancy.

Another important �nding in physiological experiments in relation with
chaotic itinerancy is chaotic alteration between synchronization and de-synchronization
of the activity of neural assemblies. The �rst �nding was made by Gray [40].
He observed this type of chaotic alteration in cat visual cortex. It is of-
ten observed that integrated electric potential of neuron assemblies strongly
correlates and is synchronized between even far separated regions when an
appropriate stimulus is input. However, this synchronization does not last
for a long time. It changes chaotically to desynchronized chaotic states af-
ter a few hundred milliseconds. This alteration looks like chaotic itinerancy.
Tsuda, Fujii, Tadokoro and Yasuoka [41] have proposed a neuronal model
with gap junction couplings that is a di�usion type of couplings to provide
a dynamical mechanism of this chaotic alteration.

Ra�one and von Leeuwen found an alteration between synchroniza-
tion and de-synchronization in a layered network model with three-variable
Hindmarsh and Rose model. They correctly discuss in the present issue the
importance of chaotic transitory process in simultaneous retrieval of memo-
ries, taking into account cognitive behaviors. Although their synchronization
and de-synchronization observed in assemblies of model neurons are relative,
this seems to represent a rather realistic model.

Han and Postnov found chaotic itinerancy in the di�usively coupled
Morris-Lecar neural system, where the transitory phenomena appears among
unstable three states: in-phase and anti-phase synchronized states and small
amplitude non-�ring state. By their work in the present issue, it turns out
that chaotic itinerancy provides a new route to chaos via resonant torus
breakdown. The di�usive coupling adopted by Han and Postnov can be
interpreted as a representation of gap junction coupling of neurons which
has widely been observed in animal and human brain, even in the neocortex.
Their system is relatively low-dimensional, but show a new mechanism of
chaotic itinerancy which may hold also in high-dimensional systems like gap
junction coupled neural systems.

A neural model for chaotic itinerancy is addressed in the present issue in
two directions. One is a numerical study in a large scale system that is pre-
sented by Nara, and the other is a mathematical study in a prototype model
of chaotic neural network of a small scale that is presented by Kitajima,
Yoshinaga, Aihara and Kawakami.

Nara has studied an e�ect of chaotic search in the problem of association
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of memories. Nara and his colleagues have used a recurrent neural network
with limit cycle oscillations which represent memories. In the present article,
Nara clari�es that chaotic itinerant behaviors can exhibit high performance
of memory search, compared with so called random search, and the perfor-
mance can be better by learning because of the change of degree of constraint
to access to each memory pattern even when chaotic search was worse than
random search.

Kitajima, Yoshinaga, Aihara and Kawakami study one of possible
mechanisms of chaotic itinerancy observed earlier by Aihara et al in a network
of chaotic neurons. Kitajima et al treat in this article four coupled chaotic
neurons with two orthogonal patterns which are stored in the network as a
representation of memory. The model was reduced six-dimensional chaotic
map which possesses three-dimensional chaotic subsystem. They analyzed
the model and found the presence of the intersection of unstable manifolds
of periodic points and collapse of in-phase-locked chaos as an essential process
of the presence of chaotic itinerancy appeared in the model.

7.5 Chaotic itinerancy at a psychological and a social
system?

Aiming at a higher behavioral or psychological level, Ikegami and Mori-
moto studied a coupled dynamical recognizer model. The study is inspired
by the dynamics of turn-taking in conversation. The model is a coupled dy-
namical system, called coupled dynamical recognizer. Here, each dynamical
system is a recurrent neural network, to play a game mutually. The state of
neural network represents \image" on the strategy of other players. Ikegami
and Morimoto used this framework for a three-person game in which coali-
tion pair may be formed or change in time[43]. Due to the instability in
learning dynamics, switching of the coalition pair is found, and is studied as
chaotic itinerancy. Although there may be some gap between the model and
the psychological experiment at the present stage, it will be promising to
discuss human psychological process (such as mutual understanding process)
from the viewpoint of CI.

Itinerancy over several quasi-stationary states is often observed in social
system. In human history, there are quiescent regimes interspersed by the
regime of drastic change, to which the term `revolution' is often assigned.
Often, in this transition, order in the ancient regime is replaced by dynamic
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change of social structure, before novel order is formed. Although it may
be too naive at the preset status of research to discuss social dynamics from
the viewpoint of CI, it may provide a novel standpoint to analyze the social
change.

In the study of history, most studies focus on estimating a chain of causal
relationships so far. Chaotic itinerancy may give a framework to understand
a mechanism for the change of relationships among elements, for generation
and collapse of ordered structure, and for the dynamics of transition among
ordered states. By choosing a problem concerning economics, in particu-
lar money, Yasutomi discusses the emergence and collapse of money from
dynamical systems of many agents exchanging goods, in this issue.

8 Signi�cance of CI

8.1 Dynamics of relationship

In a biological system, often several elements show correlated motion or work
together. Activities of neurons are often correlated, while a group of genes
is sometimes expressed together. In such case, often it is assumed that cou-
plings are prepared to be strong within these elements forming correlated
motion. Accordingly, existence of pre-de�ned 'module' is often assumed in
neuroscience and in cellular biology.

Still, examples are increasing to suggest that these groups are not pre-
de�ned, but can change in time. Groups of neurons or genes that work
correlatively often change in time or change depending on external condition.

CI provides a novel viewpoint in such 'dynamic change of relationships'
(see also, for example, [41]). In CI, groups of correlated action are formed at
each attractor-ruin, as a result of dynamics, even without pre-de�ned strong
couplings among the elements. The connection strength among elements in
each group are not necessarily strong. The connection among elements may
give restriction for the transition among attractor-ruins, but groupings are
not necessarily determined by them.

In this sense, CI gives a new insight on how module-type structures are
formed spontaneously, and also on how rules on dynamic change among these
structures are generated.

As for a theoretical tool to understand generation of ordered motion with
low-dimensional degrees of freedom, \dissipative structure" [44] or slaving
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principle [45] is often adopted. Chaotic itinerancy gives both formation of
ordered structure and also its collapse, and furthermore generation of 
exible
rule, for this itinerancy. Here it should be noted that the itinerancy is a
property of each element dynamics, but occurs at a macroscopic level de�ned
by collective motion given by elements. In this sense, the rule for itinerancy
is with regards to a higher level than each element dynamics.

8.2 Evolvability and stability

Biological system consists of a huge number of elements, say chemical species
for a cell, species for ecosystem. How such high-dimensional dynamical sys-
tems keep stability is one of the key questions in a biological system. Further-
more, a biological system, although it is stationary over some time span, can
also change in a longer time span, as are common in developmental dynamics
and in evolution. Biological system satis�es both recursiveness to maintain
its macroscopic state and changeability to a novel state as evolution. Here,
the time regimes for recursiveness and evolution are sometimes separated, as
seen in metamorphosis in development, and as discussed as punctuated equi-
librium for evolution. Chaotic itinerancy gives a theoretical mechanism to
stability for a recursive state and also to evolution. Stability of ecosystem is
discussed with population dynamics of a variety of species [46] in relationship
with CI, while recursive production of biochemical states and their evolution
are studied with itinerant dynamics[38].

8.3 Energy conversion

As discussed in x7.1, CI may provide a robust mechanism for energy conver-
sion within 
uctuating environment. If the conversion occurs through "heat',
mechanical energy given by a few degrees of freedom is once absorbed into
many degrees of freedom. CI also gives switching between low- and high-
dimensional dynamics. In CI, however, itinerancy occurs through restricted
paths within the total phase space. Hence the conversion may occur more
robustly and eÆciently within a limited time span. Deviation from Arrhenius
law for crossing energy barrier discussed by Nakagawa and Kaneko may
suggest such relevance of CI dynamics to energy conversion.
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8.4 Searching process

Searching process within high-dimensional phase space is often important
in optimization and information processing. Since orbits in CI take only
restricted regions in the phase space, search process with CI may be more ef-
�cient than random searching process, if the dynamics in the phase space
are chosen properly. An example for such application was discussed by
Nozawa[22], as a use of CI for traveling salesman problem.

8.5 information processing

Since in chaotic itinerancy \neutral" stable modes are immanent, which are
realized in the successive transitions between ordered modes via chaotic mo-
tion. Therefore, the decay of the autocorrelations and mutual information
due to chaotic motion is very slow; usually in power decays. In such a case,
according to Matsumoto and Tsuda [47, 48, 49], an information mixing ap-
pears, thereby the information input to a certain element of the network
could propagate to other elements before decaying. By the information mix-
ing property, the information possesses a similar structure to hologram. In
other words, each digit contains the content of whole information, though
there is a quantitative di�erence. By this property, the input information
is maintained within the network. The di�erence from the hologram is the
way of maintenance of information: in a static manner in hologram, but in a
dynamic one in chaotic itinerancy. Indeed, such global information cascade
in CI is studied by using a bit space, for a GCM[9].

Furthermore, another signi�cance of chaotic itinerancy in information
processing lies in the use of temporal development. As Ra�one and van
Leeuwen show in the present issue, and Tsuda et al [50] and Nicolis and
Tsuda [51] also show elsewhere, the motion of chaotic itinerancy could realize
the multiplexing time series. This is particularly important when we consider
a pattern association with a help of associative memory. When some patterns
pop up in our mind, this must not kill other memorized patterns. When
such a pattern disappears from our mind, another pattern should pop up for
information processing. It turns out by the present work by Ra�one and van
Leeuwen that this is realized by neural networks exhibiting chaotic itinerancy
that is chaotic alternation between synchronization and de-synchronization
even in learning process.

Generation of various time scales in chaotic dynamics may allow for infor-
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mation propagation in modes with di�erent time scales. CI, through correla-
tions of ordered modes and chaotic dynamics may lead to such information
propagation to modes with far distant time scales. Indeed, in biological
system, modes with di�erent time scales are intermingled. Furthermore, in
\memory", fast time-scale changes are embedded into much slower modes.
Papers by Fujimoto and Kaneko and Kay discuss this issue.

Signi�cance of chaotic itinerancy in brain and cognition has widely been
discussed by Tsuda and colleagues [42]. Among others, related to this issue,
the simultaneous processing of learning and retrieval of memories is high-
lighted. In the appearance of chaotic itinerancy, the system which exhibits
chaotic itinerancy can retrieve memorized patterns while learning. In usual
neural network models, this simultaneity has been diÆcult to be realized,
because without chaotic itinerancy only currently retrieved memory is ob-
ject to be learned and such excess learning avoids the renewal of retrieval of
memories.

Freeman [52] addressed a perceptual drift as a possible contribution of
chaotic itinerancy to the level of perception and cognition. Perceptual drift
is necessary particularly for pattern recognition and classi�cation that we
naturally experience in our daily life. This is a category formation in an
extensive sense. For category formation, both identi�cation of di�erent pat-
terns by �nding similarity and di�erentiation of similar patterns by �nding
di�erence [41] are prerequisite. In order to make these processes compatible,
perceptual drift is used to work at the cognitive level. Freeman's �nding
addressed in the present issue is a new evidence of perceptual drift. Since
perceptual drift is deeply related to the way of formation of memories, es-
pecially episodic memories, the propagation and non-stationary transition
of the activity of entire olfactory system and hippocampal formation with
multiple time scales described by Kay may give a dynamical mechanism of
perceptual drift underlying the formation of memories.
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