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Abstract

We report the existence of chaotic itinerancy in a coupled Milnor attractor system. The

attractor ruins consist of tori or local chaos generated from the original Milnor attractors.

The chaotic behavior exhibited by a single orbit can be considered a \non-stationary"

state, due to the extremely slow convergence of the Lyapunov exponents, but the behavior

averaged over randomly chosen initial conditions is consistent with the limit theorem. We

present as a possibly new indication of chaotic itinerancy the presence of slow decay of

large 
uctuations of the largest Lyapunov exponent.

A typical characteristic of chaos is the sensitive dependence on initial con-

ditions that is measured by the Lyapunov exponent. The presence of positive

Lyapunov exponent is, however, insuÆcient to characterize chaotic itinerancy.

We investigated the 
uctuations and convergence of the exponents.

1 Introduction

The concept of chaotic itinerancy (CI) was proposed [1, 2, 3] to describe the curious

transitory dynamics, such as chaotic transitions, observed to take place between the ru-

ins of attractors in various dynamical systems. In three representative works treating

CI, Ikeda studied a dynamical system consisting of delay-di�erential equations, Kaneko

studied globally coupled maps (GCM), and Tsuda studied a dynamical system consisting

of non-equilibrium neural networks. Among such systems, GCMs have been most thor-

oughly studied, because they possess a symmetry that is absent in the other two types

of systems. In his GCM, Kaneko [4] obtained a description of the mechanism underlying

CI in terms of Milnor attractors, and he also investigated the occurrence of CI through

saddle-node bifurcations. In that system, at the critical parameter value in the saddle

and node merging, Milnor attractors appear, and after the collapse of these Milnor at-

tractors, the system exhibits CI moving among the ruins of Milnor attractors, where each

Milnor attractor represents a type of synchronized chaotic cluster. The presence of such

synchronized chaos in GCM results from the chaos exhibited by the uncoupled individual

maps. Such synchronized chaos de�nes an invariant subspace. In such a case, in which
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the system possesses symmetry under certain group actions, like transposition of the in-

dividual maps, it is easily proved that a set that is invariant under such group action is

also invariant under the system dynamics. The presence of riddled basins is related to

the existence of transitory orbits between invariant sets.

While some progress has been made in the elucidation of the mechanism underlying

CI, it has not yet been fully clari�ed. Moreover, the relation between the occurrence of CI

and the presence of riddled basins is not clear. Actually, there has yet been no observation

of a riddled basin in non-equilibrium neural networks. In order to clarify the mechanisms

underlying CI and its relation to basin structure, we study here chaotic transitions that

di�er from those observed in system with invariant sets whose existence is due to a simple

symmetry like those mentioned above. We consider a system consisting of coupled circle

maps, with individual map possessing a Milnor attractor. We investigate the nature of

the dynamic behavior of this coupled system, whose couplings depend on the relative

phase angles of the individual maps. Our model does possess a type of symmetry, but

this symmetry is not directly related to the appearance of chaotic transitions. Because of

this more complicated type of symmetry, in our system, it is not the Milnor attractors of

the individual maps but a torus generated by interactions between such Milnor attractors

that results in an attractor ruin after crisis.

We found a complicated basin structure consisting of a riddled area and Wada basin-

like area, but we did not recognize the well-de�ned relation between the presence of riddled

basin and the appearance of CI via the appearance of Milnor attractors. On the other

hand, we found the large 
uctuations and slow convergence of the Lyapunov exponents.

It is well known that one of the main characteristics of deterministic chaos is the presence

of positive Lyapunov exponents. On the other hand, we assert, in this paper, that the

large 
uctuations and slow convergence of even the largest Lyapunov exponent can be a

typical indication of the presence of CI.

The organization of the paper is as follows. In x2, we describe the model. We demon-

strate the existence of chaotic itinerancy between ruins of tori in x3 and transient chaotic

itinerancy between ruins of local chaos in x4. In x5, we describe the statistical character

of chaotic itinerancy in the system we study. We treat the time development of transients

of the Lyapunov exponents and their statistics in relation with ergodicity. Section 6 is

devoted to a conclusion and discussion with a new hypothesis.

2 The model

The system we consider in this paper consists of coupled maps, each of which is given by

xn+1 = f(xn) (mod1); (1)
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f(x) = x� !cos(2�x) + !; (2)

where n represents a discrete time, which takes natural number values, and ! (0 < ! < 1)

is a parameter that determines a degree of nonlinearity. This map is called a circle map.

Only the di�erence from the conventional use is that the parameter ! is introduced to

control both the terms of nonlinearity and shift. By this use of the parameter, all the

�xed points become indi�erent �xed points whose stability is neutral.

Conventional attractors are de�ned geometrically, using the concept of attracting sets.

According to this de�nition, roughly speaking, an attractor is a set of points with the

property that all points in its neighborhood either approach it or are absorbed into it

as the system evolves. Milnor (1985) [5] de�ned an attractor from another viewpoint, in

which both topological and measure-theoretic concepts play roles. We now consider this

de�nition. Let � be a measure equivalent to the Lebesgue measure on a metric space X,

on which dynamical 
ows are de�ned. A compact invariant set � is called a (minimal)

Milnor attractor if the following hold:

1. The basin of attraction B(�) of � has a positive �-measure, i.e. �(B(�)) > 0.

2. There does not exist a proper closed subset �0 satisfying �(B(�)nB(�0)) = 0:

According to this de�nition, a Milnor attractor can possess an unstable manifold. The

dynamical system (1) is critical in the sense that x = 0 is a �xed point of this map and

a Milnor attractor for any value of ! (see Fig.1). When ! is small, x = 0 is the unique

�xed point, as is seen in Fig.1 (a), but when ! = 1=2, x = 1=2 becomes another �xed

point and a Milnor attractor. This situation is depicted in Fig.1 (b).

In the present paper, we consider the following system of coupled maps de�ned on a

circle:

xn+1(i) = f(xn(i)) + �(sin(2�xn(i� 1)) + sin(2�xn(i+ 1))� 2sin(2�xn(i))); (3)

(i = 1; 2; � � � ; N):

Here, N is the dimension of the system, and � is a coupling constant that takes a non-

negative real number value. For any n, xn(0) and xn(N + 1) are de�ned as xn(N) and

xn(1), respectively. Thus the present system is a coupled map lattice (CML) with a circle

map [6] consisting of Milnor attractor(s).

3 Observation of CI through tori

We �rst consider (3) in the case N = 5. This case has a special interest since it is an

intermediate case between CML and GCM. Let us consider the simple but typical case

such that all the connection strengths are identical. GCM possesses the permutation

symmetry. In other words, GCM is invariant under permutation over all elementary
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Figure 1: The individual map of the system studied in the case of critical conditions. (a) ! = 0:14.
Here, the origin is the only indi�erent �xed point. (b) ! = 0:5. Here there are two indi�erent �xed
points. The indi�erent �xed points depicted in both (a) and (b) are Milnor attractors. The individual
maps used in the coupled system in this paper correspond to (b).

individual maps. When this group action commutes with the dynamical system de�ned

by GCM, the the permutation symmetry leads the existence of invariant subspace. On

the other hand, CML on a circle does not possess such symmetry but possesses the

translational symmetry. Because the translation is a special case of the permutation, CML

is less symmetric than GCM. The di�erence of dynamics between CML and GCM can be

characterized by the di�erence of a total number of connections. Let the total number of

connections in CML de�ned on a circle and GCM, both having N elementary individual

maps be denoted by CML(N) and GCM(N), respectively. One way of quanti�cation of

such a di�erence is to de�ne the following quantity denoted by Q(N):

Q(N) := (GCM(N)� CML(N))=GCM(N): (4)

The CML and the GCM are equivalent in both cases of N = 2 and N = 3, that leads

Q(2) = Q(3) = 0. In the limit N !1, we obtain Q(1) = 1. In the intermediate cases,

we easily see, for instance, Q(4) = 1=3; Q(5) = 1=2 and Q(6) = 3=5. In such a way, an

equal e�ect of CML and GCM to the dynamics can be expected in the case of N = 5.

In GCM, a typical CI has been found [2] and widely investigated, [6] whereas in CML it

is known that CI-like transitory dynamics are rare. One of reasons may lie on the less

symmetry in CML than in GCM. By this reason, the study of CML on a circle with N = 5

is important. For the comparison, we also study in x4 the case of N = 10 that is more

CML-like since Q(10) = 7=9.

In Fig. 2, we display its bifurcation diagram with respect to � for a �xed ! = 1=2

and N = 5. In this �gure there is one orbit for each value of �, and the same initial

conditions were used for each. As seen below, this system has multiple basins, and hence

the bifurcation diagram depends on the initial conditions.
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Figure 2: Bifurcation diagram projected onto x(1) in the case ! = 0:5 and N = 5. Identical initial
conditions were used for all parameter values of �. Because many attractors coexist in this type of coupled
system, the nature of the diagram depends on the initial conditions.

Several kinds of CI are found for some parameter values, one of which appears near

� = 0:08885, where �ve one-dimensional tori are still stable. These tori are identical in the

sense that they di�er only by the labeling of the variables. Figure 3 displays the dynamic

behavior and the attractor of one of these tori for � = 0:08885. In Fig.3(a) a typical time

series of the system is displayed, where the individual time series of each of �ve variables

are plotted together. Two pairs of variables, x(1) with x(2), and x(3) with x(5), are

almost synchronized in one phase and are apparently desynchronized in another phase.

In the phase with quasi-synchronization, a �ne structure is observed (see the oblique part

of the torus in Fig. 3(b)). The �ne structure caused by a small di�erence between x(1)

and x(2) and between x(3) and x(5) eventually grows, and the dynamics of the individual

variables thereby become completely desynchronized. In this range of parameter values,

periodic orbits coexist, but their basins of attraction are extremely small, and moreover

these periodic orbits play no role in the occurrence of CI.

The CI exhibited in this case appears soon after the collapse of the tori via crisis. As

seen in Fig. 4, the orbit is trapped in the region where a torus existed, tracing the ruin

of torus and then is kicked out of this region and behaves chaotically. Two such states

of tracing appear, which we call the \up-state" and the \down-state." This is seen in

Fig.4(a). The \up-state" is that in which the orbit traces the ruins of tori denoted T1,

T3, T4 and T5, and the \down-state" that in which it traces the ruin of the torus denoted
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Figure 3: (a) Overlaid time series of �ve tori. (b) Phase portrait of a certain torus in x(1)�x(2) space.
(c) Overall phase portrait of �ve tori in x(1)� x(2) space. Here, N = 5; ! = 0:5, and � = 0:08885.

T2. Moreover, in this case (� = 0:088858), there are two positive Lyapunov exponents,

and the Lyapunov dimension is estimated as 4.03. However, as discussed below, there is

a serious diÆculty involved in the computation of the Lyapunov exponents, and for this

reason, this estimation of the dimensionality is not reliable.

Because the transient motion of tori is similar to CI, it is natural to think that the

appearance of CI must be deeply related to some instability of tori. In order to clarify

the mechanism underlying the destabilization of tori and its role in the appearance of CI,

we studied the stability of tori with respect to perturbations. The basins of attraction

of the �ve tori have peculiar structures. The graphs obtained by investigating the basin

structures of all tori are similar. We found that the basin of each torus consists of a

combination of a riddled structure and a Wada basin-like structure [8].

Following Kaneko [7], we calculated the probabilities of orbits jumping out of tori

when a perturbation is applied to the tori. In Fig.5, this probability is plotted for T1

as a function of the strength of the perturbation. Perturbations were applied to many
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Figure 4: (a) Time series of chaotic itinerancy (CI). (b) Phase portrait in x(1)�x(2) space of CI. This
CI emerges after collapse of the tori shown in Fig.3. Such tori constitute an attractor ruin, where the
orbits remain for a long time, carrying out a long-term trace. Here, N = 5; ! = 0:5, and � = 0:088858.

randomly chosen parts of T1. In each test of stability, the strength of perturbation � was

�xed, and at each chosen part of T1, �ve directions were selected for the perturbations,

each of which is taken along each axis of coordinate, and several other directions were also

selected for con�rmation. The torus T1 was judged to be completely stable under such

perturbations with a �xed strength only if all the perturbed orbits are attracted to T1.

The degree of instability was measured for each strength of perturbation by the probability

p(�) of orbits being kicked out under such perturbations. From this computation, it is

found that T1 is partially stable with respect to a perturbation of strength less than 0.003,

because p(�) > 0:995 if � > 0:003, and the strength below which the torus is completely

stable is 2:0�10�5 because up to such a strength, the probability of escaping out of torus

is zero. We regard the latter as the averaged \strength" [4] of the torus T1.

The complexity of a basin in the neighborhood of a torus can be expressed as the de-

pendence of the attractor strength on the bifurcation parameter, i.e. the coupling strength

�. This dependence is shown in Fig. 6. Figure 6 (a) indicates that this dependence is

roughly linear, but �ne structures appear (Fig.6(b)), and they appear to be self-similar,

re
ecting a self-similar structure of the basin near the torus. It is observed that CI ap-

pears when this attractor strength becomes zero. At this critical point, the torus becomes

unstable, though some stable manifolds of tori remain. For this reason, this torus is no

longer a geometric attractor, but it is an attractor in Milnor's sense.

Each individual map has two indi�erent �xed points, which are attractors in Milnor's

sense. Each of these Milnor attractors is also an invariant set derived from symmetry

of the coupled system, such as that responsible for the existence of the state in which

all elements are synchronized. It is not, however, expected that these Milnor attractors

possess a riddled basin. Because for riddling to exist, it is necessary that an invariant
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Figure 5: The \strength" of the torus T1. For a �xed strength of perturbation, the direction of
the perturbation is chosen randomly. This is the sense in which the perturbation in this calculation is
\random". A given point in the torus is considered to be a \kicked-out point" if at least one of 100
perturbations considered causes the orbit to leave the torus. By calculating the ratio of kicked-out points
among the 30,000 randomly chosen points in the torus, the probability of an orbit being kicked out of
the torus is estimated. The abscissa represents the strength of the perturbation and the ordinate the
probability. Here, N = 5; ! = 0:5, and � = 0:08885.

set has positive measure, whereas these Milnor attractors are simply �xed points (and,

speci�cally, not a torus or a chaotic attractor). For this reason, in this model in order

for CI to exist, it is necessary that there appears a torus or chaos, or a combination of

these attractors. In the present case, every torus is generated by the interaction of these

two indi�erent �xed points. At the exact positions of these �xed points, the interaction

term vanishes, and therefore a slight shift from these points brings about weak sinusoidal

interactions. Incommensurate cycles give rise to tori, whose situation is easy to occur

because of sinusoidal interactions.

We actually found CI, that appears, based on torus ruins. The above considerations

derive another possibility of the appearance of CI in the present model, that is based on

chaos as attractor ruins, as is seen in GCM [2]. Actually, we found such a case, which is

discussed in the next section.

The other possibility can occur in the case of higher-dimensional dynamical systems,

where the overall system motion is decomposed into two types of modes, high-frequency

and low-frequency modes. If a certain combination of variables form high-frequency

modes, which causes the motion to be erratic around indi�erent �xed points of a sub-
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Figure 6: \Strength" of torus. The ordinate represents the minimum strength of the perturbation by
which the orbit in the torus is kicked out. The abscissa represents the interaction strength �. (a) An
almost linear dependence is observed. (b)However, �ne structure in
uenced by the fractal structure of
the basin of the torus is clearly observed. Here, N = 5; ! = 0:5.

system composed of variables that do not form high-frequency modes, then the motion

around the indi�erent �xed points can have positive measure. In such a case, the complex

transitory dynamics between the \noisy" �xed points can appear as CI. We observed such

CI generated from noisy �xed points in a non-equilibrium neural network model [14] and

also in the present model with N = 10, ! = 0:5 and � = 0:037, though the CI is transient

in the latter case.

4 Observation of transient CI through local chaos

Chaotic itinerancy can also be generated from local chaos, as discussed in the previous

section. In this section, we report several characteristics of this type of CI. A typical

type of such CI was observed in the case ! = 1=2 and N = 10, although this is transient

behavior. One characteristic of this family of dynamical systems is that this CI coexists

with other attractors, which form tori in this case. The ruin of the present CI results from

local chaos that appears just before the CI. This local chaos possesses only one positive

Lyapunov exponent and has dimension 3.38. In the transient CI, there are three positive

exponents, and the Lyapunov dimension is in the range 4.5-5.0. Increasing the interaction

parameter �, global chaos appears. This global chaos emerges through the distortion of

tori. In this regime beyond the critical point � = 0:1, the number of positive Lyapunov

exponents is nine, and the Lyapunov dimension approaches to the full dimension, 10.

The local chaos are generated from two kinds of indi�erent �xed points (point attrac-

tors in Milnor's sense). We found two types of local chaos, partially synchronized and

desynchronized.

We often observe the curious behavior of a short-term switch between di�erent types
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of local chaos. There is the tendency that approximately �fty percent of the states of

desynchronized chaos become synchronized through such a short-term excursion, but the

reverse does not occur. Instead, the tracing phase of local chaos tends to be desyn-

chronized after a long-term chaotic excursion. Altogether, we have observed the following

progression: 'long-term global chaos'! 'desynchronized local chaos'! 'short-term global

chaos' ! 'synchronized local chaos' ! 'long-term global chaos'.

In order to elucidate the details of the structure of phase space that are speci�c to

the coexistence of the presently considered type of CI with tori, we further investigate

the basin structure of tori. Tori exist in the neighborhood of the ruin of local chaos, and

therefore a complex basin structure among tori is expected. We actually observe a riddled

structure in almost all parts of phase space.
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5 Distributions and ergodicity

The CI discussed in x2 can be decomposed into two distinct phases: the tracing phase of

torus ruins and the chaotic transition phase. We investigated the characteristics of these

phases. Several important questions arise in this investigation:

1. From where in the neighborhood of a torus does an orbit leave?

2. What is the distribution of the durations of chaotic transitions?

3. What is the distribution of the durations of orbits tracing torus ruins?

4. How do the Lyapunov exponents converge?

5. In relation to question 4, what about the ergodicity of the system?
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Figure 7: Structure of orbits and the statistics of the itinerancy. Here, N = 5; ! = 0:5, and � = 0:088858.
(a) Torus ruin of T1. Displayed here are a collection of the di�erent orbits, each of which is that obtained
for 30 time steps immediately preceding chaos. (b) Frequency distribution of the time in the attractor
ruin. The ordinate is a log scale. A crossover of the form of the damping rate is seen. The damping
rate is 0.0265 for 0 � n � 180, and 0.00286 for 180 � n � 1; 000. (c) Frequency distribution of the time
spent in chaotic transition when a transition from the torus T1 to the torus Tk (k = 1� 5) occurs. The
transition probability to each torus is the same for n � 120, but di�erent for n � 120. (d) The frequency
distribution of the time elapsed during chaotic transition. The ordinate is a log scale. The damping rate
is 0.00631.
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We attempt to give an answer to each question. The orbits that leave the ruin of the

torus T1 are depicted in Fig.7 (a). We �nd that orbits can leave any part of the torus

{ except the places in the neighborhood of the diagonal part of T1 in x(1)-x(2) space,

and move into chaotic regions. The structure in the neighborhood of the diagonal part

of attractor play a special role in the transition. Orbits cannot leave the lower side of

the boundary of the torus along the diagonal part, but they can readily leave from upper

boundary. This means that even tiny deviation from the synchronization of the variables

x(1) and x(2) leads chaotic transition if amplitude of the variables is large enough. It is

thus seen why orbits in the neighborhood of the diagonal part become chaotic only after

a long time, while those that exist in the torus ruins become chaotic after a relatively

short time.

The two types of orbits discussed above for transition determine the probability dis-

tribution, PT (n), of the residence times of orbits tracing torus ruins. As seen in Fig.4,

the orbits that take a long time and those that take a short time to become chaotic con-

tribute to the probability distribution in a di�erent way. The transition for a short time

gives unequal probabilities of the orbits approaching to other torus ruins, while that for

a long time gives almost equal probabilities. The existence of these two types of orbits

explains the presence of two regions in the distribution of the residence time in torus

ruins, characterized by two di�erent exponential forms, that is, the crossover . For short

stays, we have the distribution PT (n) / exp(�1n), where �1 = �0:0265, and for long

stays, PT (n) / exp(�2n), where �2 = �0:00286 (Fig. 7 (b)).

The crossover between these two characteristic forms of PT may be related to the rela-

tion between the unequal distribution of times for short-term chaotic transitions between

tori and the equal distribution of times for long-term transitions. These probability dis-

tributions PC(n) are shown in Fig.7 (c). This probability distribution of the chaotic tran-

sition time also exhibits an exponential form, PC(n) / exp(�3n), where �3 = �0:00631

(see also Fig. 7 (d)). Exponential decay is also observed in higher-dimensional maps, for

example with N = 10, where we have a similar crossover phenomenon in the distributions

to that in the above PT and the attractor ruins are those of local chaos.

We further investigated the Lyapunov exponents and found the very slow convergence

of exponents. This implies that the temporal average is not practically useful. However,

when we consider many orbits beginning from many di�erent (randomly chosen) initial

conditions and compute the average of the exponents over these orbits, the distribution

of the exponents by this ensemble average converges rapidly. To clarify this point, we

now give an example. Figure 8 depicts an instance of such slow convergence, where the

frequencies of the time-dependent exponent with which the largest Lyapunov exponent

evaluated at each value were tabulated over the following 100,000 time steps: (a) n =
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100,000-200,000, (b) n = 500,000-600,000, (c) n = 800,000-900,000. As seen in the �gure,

the distribution of the largest Lyapunov exponent gradually becomes sharp, but then

it 
attens out again, and this behavior is repeated. This characteristic of very slow

convergence of the Lyapunov exponent in the long time average is also re
ected by the

time series of the average of the exponent up to some time and the scale of its variance.

Figure 9 plots this average and variance in the cases of CI (in (a) and (b)) and usual

chaotic behavior (in (c) and (d)). The chaotic behavior considered here is a global chaos

for the case N = 5; ! = 0:5, and � = 0:12.

In global chaotic behavior, the Lyapunov exponent converges rapidly, and its variance

rapidly decays to zero, as shown in Figs. 9 (c) and (d). The satisfactorily small value

10�11 � 10�12, limited by the time used in the numerical computation. To further clarify

the convergence in chaos, we calculated the same quantities in the case of the logistic map

xn+1 = 3:9xn(1�xn) and obtained results similar to those in Figs. 9 (c) and (d) (see Figs.

9 (e) and (f)). Contrastingly, in the case of the presently studied CI, the average value

of the Lyapunov exponent 
uctuates greatly in time, and the variance approaches some
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�nite value � 10�9 � 10�8 and then 
uctuates minutely about it, as shown in Figs. 9 (a)

and (b). Thus, the statement that the existence of a non-zero variance is a good indication

of the presence of CI seems to be reasonable, though we cannot deny the possibility that

what we have observed here is an e�ect of the �nite system size { that is, that the nonzero

variance is due to the �nite value of N . On the other hand, the following considerations

guarantee the present assertion, independent of the system size, as far as CI occurs due

to the appearance of Milnor attractors.

In the present study, we used the system size N = 5 that gives an intermediate level of

two dynamical systems, CML and GCM, as indicated by Q(5) = 1=2. If we increase the

system size, preserved a CML-type connection, then the e�ect of GCM becomes weak,

and consequently CI becomes more diÆcult to be found. Actually, we found only tran-

sient CI in the case of N = 10. On the other hand, we also found a similar behavior of

large 
uctuations and extremely slow convergence of the Lyapunov exponents in GCM

with logistic maps which was proposed as one typical model exhibiting CI. Kaneko [9]

discussed in GCM with logistic maps a critical system size such that the Milnor attrac-

tors are dominant and then CI appears. Kaneko showed that in a wide class of GCM

including asymmetric ones the critical size is 7� 2. This coincides with the condition of

the appearance of attractor crowing. Actually, the system size N = 6 is obtained as the

number of the smallest integer satisfying the inequality (N � 1)! > 2N , where (N � 1)!

gives the order of the number of attractors and 2N provides the phase space volume [9].

These facts indicate that this characteristic of Lyapunov exponents can give a universal

index of the presence of CI, independent of an elementary individual model and its system

size.

Furthermore, we calculated the index of the law that governs the convergence of large


uctuations of the averaged exponent [10, 11, 12]. Let �1(t) be a time-dependent largest

exponent and �1 be the converged value of the largest Lyapunov exponent. As seen

from Fig. 10, the 
uctuation of the average value < (�1(t) � �1)
2 > damps extremely

slowly. This quantity generally follows a power law t��, where 0 < � � 2, if the time-

dependent largest exponent calculated here re
ects precisely an unstable component of

tangent space. It is known that the relation 1 � � � 2 holds in the chaotic behavior with

an exponential decay of correlations and 0 < � < 1 in the chaotic behavior with a power

decay of correlations. The latter relation holds also in chaotic behavior of Hamiltonian

systems because of the presence of tori in the chaotic sea (see, for example, Ref.[13]). We

obtained in the present case � � 0:8.
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Figure 9: Comparison of the 
uctuations of the largest Lyapunov exponent in the case of CI with that in
the case of usual chaos. The averaged exponent and the variance over each 100,000 time steps is indicated
by a cross. The temporal 
uctuations of (a) the averaged largest exponent and (b) its variance in the
case of CI, with N = 5; ! = 0:5, and � = 0:088858. The temporal 
uctuations of (c) the averaged largest
exponent and (d) its variance in the case of global chaos, with ! = 0:5, and � = 0:12. The corresponding
quantities are shown in (e) and (f), respectively, in the case of logistic chaos obtained from the map
xn+1 = 3:9xn(1� xn).
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Figure 10: The 
uctuation of the largest Lyapunov exponent at each time step that is de�ned as
averaged square of the di�erence between the value of time-dependent largest exponent and the convergent
value of the largest Lyapunov exponent decays in time as t��, where � � 0:8. The average was taken
over �ve hundreds di�erent initial conditions. The convergent value of the Lyapunov exponent was
evaluated at n =30,000,000. The quantity < (�1(t) � �1)

2 > needs a tough calculation, because of
the diÆculty of estimation of lambda1 due to slow convergence. We believe the calculation of another
quantity < (�1(t) � �1(t � 1))2 > is much easier and gives more reliable estimation of the index. The
reason why we used this quantity in this paper is just a comparison with theoretical values. The case
considered is that of CI with N = 5; ! = 0:5, and � = 0:088858.

Figure 11 shows the distribution of the largest Lyapunov exponent, evaluated at n =

100,000. The averages were taken over 50,000 samples with randomly chosen initial con-

ditions. This distribution converges to a certain smooth distribution. This indicates that

the ensemble average of the largest Lyapunov exponent converges to a smooth distribu-

tion. When the number of time steps used in the evaluation of the Lyapunov exponent is

increased further, the distribution of the ensemble average becomes sharper and sharper.

This should converge to a delta function, but we observed (as mentioned above) that

this convergence is extremely slow, behaving as � n�0:8. From these considerations, we

conclude that the system is ergodic in principle, but practically it is almost impossible to

con�rm this in a reasonable amount of time. Thus in any practically feasible observation,

one would conclude that the system is chaotic but non-ergodic.
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Figure 11: The distribution of the largest Lyapunov exponent evaluated over 100,000 steps. The average
was taken over 50,000 samples.

The slow convergence of near-zero Lyapunov exponents has been investigated( [16] and

T. Sauer in this focus issue) as a possible indication of CI-like transition dynamics. Our

study reveals that long-lasting and large 
uctuations of the largest Lyapunov exponent is

another such possible indication.

There are several possibilities for the mechanism underlying this type of slow conver-

gence:

(a) The tangent space may not be spanned.

(b) The divergence and convergence of nearby orbits may be slower than exponential

in time. For example, there may be of power-law forms.

(c) The other exponent(s) may 
uctuate in such a way as to compensate for the


uctuation of the largest exponent.

In the case of (a) there is no convergence of all exponents, in the case (b) there is the


uctuation of only near-zero exponents, and the case of (c) can occur when the tangent

space is degenerate. In order to clarify the mechanism underlying the presently considered

very slow convergence, we also evaluated the convergence of other Lyapunov exponents

(see Fig. 12). We found that in fact these exponents converge extremely slowly if at all,

and hence we have the case (a).
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Figure 12: Fluctuations of other Lyapunov exponents than the largest one. (a) For the second, (b) the
third, (c) the fourth and (d) the �fth Lyapunov exponent, respectively. For the notion of the �gure, see
the caption of Fig. 8.

6 Conclusion and Discussion

We observed chaotic itinerancy resulting from the coupling of Milnor attractors. Through

the numerical studies, we conclude that the system with a size N = 5 characterized

by Q(5) = 1=2, where the e�ects of CML and GCM are equal, still generates CI, but

more CML-like systems (for instance, N = 10) generate only transient ones. In the

present study, we considered a system consisting of coupled circle maps, whose uncoupled

individual map produces Milnor attractors of the �xed point type. If these indi�erent

�xed points become an attractor ruin, only saddle connections can appear, and therefore

it is not expected that CI will appear if there is no external noise. However, such a system

may possess a similar phase space structure to the one of CI, as seen in noise-induced CI

in non-equilibrium neural networks [17, 3, 14]. In such a case, the external noise can play

the role of creating an invariant set that in some cases forms the basis of a riddled basin.

In the present model, CI is generated in a more complicated situation in which a

torus or local chaos is that which creates an invariant set. All tori or local chaos can be

identi�ed by the system's symmetry, but in general, the generated transition path does
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not necessarily possess this symmetry. For instance, the torus T2 can be obtained from

the torus T1 by simply exchanging the variables x(1) and x(2), while T3 can be obtained

from T2 by simply exchanging x(2) and x(3). Because of these symmetries, for every

transition path from T1 to T2 there is an identical path from T2 to T3. However, it is

not necessarily true that for every path from T1 to T2 there is an identical path from T1

to T3. Because of this type of asymmetry, in the CI existing in our system, the manner

in which transitions are made between ruins of the di�erent attractors depends on the

initial conditions. For this reason, even though the system is ergodic, it appears to be

non-ergodic. We have elucidated the reason that in any practically feasible observation of

the system it will appear non-ergodic. We summarize our numerical results in the form

of the following hypothesis.

Hypothesis

We conjecture that the apparent non-ergodic nature of the system resulting from the

extremely slow convergence of the Lyapunov exponents is an indication of CI.

Chaotic itinerancy is universally observed in critical but, perhaps, structurally stable

situations in high-dimensional dynamical systems. Also, in the dynamics of brain activ-

ity, a chaotic alternation between synchronized and desynchronized states in the visual

cortex was found [18] and many studies have been made regarding the mechanism and

the functional signi�cance of this behavior. However, these have not yet been understood.

We observed behavior similar to this type of chaotic alternation in the system studied

here. This suggests that the present model may provide an appropriate dynamical in-

terpretation of this curious behavior. Furthermore, other types of chaotic behavior of

brain activity have been observed, including spatio-temporal chaos over a wide area of

the olfactory system and the hippocampus [19] and perception drift [20]. Considering

chaotic itinerancy and the mathematical description obtained in this paper as a model

of non-stationary brain activity that observed in active animals and humans performing

perceptual and cognitive tasks, it should be possible to investigate many types of such

phenomena, including those mentioned above [15].
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