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Abstract

Kampis proposed the study of chaotic itinerancy, pointing out its significance in
domains of cognitive science and philosophy. He discovered in the concept of chaotic
itinerancy the possibility for a new dynamical approach that elucidates mental states
with a physical basis. This approach may therefore provide the means to go beyond the
connectionist approach. In accordance with his theory, we here highlight three issues
regarding chaotic itinerancy: transitory dynamics, diversity, and self-modifying system.

The main characteristics of chaotic itinerancy are summarized as follows (Kaneko and
Tsuda 2001, 2003, Tsuda 2001), although not all characteristics are necessarily required:
(1) there appear a relatively large number of modes possessing neutral stability as well
as definite stable and unstable modes;

(2) there appears a highly ordered but irregular temporal structure, and hence the
appearance of history-dependent transitions;

(3) chaotic itinerancy differs from simply chaotic behavior in the sense that these
transitions can be characterized as transitory dynamics through which the system moves
between low-dimensional attractor ruins and high-dimensional chaotic states;

(4) the statistical convergence of physical quantities is absent or extremely weak;

(5) the system does not possess tracing properties.

There is a mathematical basis for each of the above-stated characteristics. In a system
that possesses the pseudo-orbit tracing property, it is guaranteed that its mathematical


mailto:tsuda@math.sci.hokudai.ac.jp

trajectories can be correctly traced in numerical simulations. Typical chaotic systems
possess this property, but some chaotic systems do not. In such systems, it is not
possible to properly trace each trajectory in simulations. This lack of the pseudo-orbit
tracing property leads to another instability, which differs from orbital instability that
chaotic systems inherently possess, that is, instability with regard to computation,
description, and/or observation. Thus, contrary to the picture presented by Kampis, a
factor for renewing a system itself exists even in conventional chaos, in principle.
However, as Kampis correctly points out, this property is not enough to realize an actual
renewal process. Even if such a property does not exist, it is possible to obtain precise
statistical properties, which reflect the properties of an attractor as a whole. Actually,
this attractor-tracing property exists even in conventional chaos. On the other hand, the
statistical properties of chaotic itinerancy do not necessarily provide information about
the overall attractor (Sauer 2000, 2003, Tsuda and Umemura 2003). Chaotic itinerancy
thus appears to be a new type of dynamic behavior that goes beyond the attractor
concept. It is thus seen that chaotic itinerancy can be considered a form of transitory
dynamics that might appear to be ““non-stationary’” in short-time observations.

In dynamical systems exhibiting chaotic itinerancy, there come to exist transition rules
between attractor ruins. The nature of these rules is determined by chaotic itinerancy
itself. The dynamical orbit is attracted to the ruins, and in this situation, the number of
effective degrees of freedom remain relatively small. Therefore the system can be
described with only a few modes. While the system remains in such a space, other
modes become activated. As a result, the system can no longer be confined in such a
space. Because there are restricted regions that can act as exits, there are a number of
selected orbits that can leave (Kaneko 1998). When an orbit leaves this space, the
number of effective degrees of freedom increases, and there results a large diversity of
states. After some time, the orbit is attracted to another ruin, where a different set of
effective modes describe the system. In such a way, such dynamical systems exhibit
history-dependent activity.

In the study of dynamic behavior in a neural network model with nearest-neighbor
couplings, we recently identified a mechanism involved in chaotic transitions between
synchronized and de-synchronized states (Tsuda, Fujii, Tadokoro, Yasuoka, and
Yamaguti 2004). Such transitions have been observed in animal and human brains
(Freeman 2004, Gray, Engel, Koenig, and Singer 1992, Lampl, Reichova, and Ferster
1999). This behavior appears to consist of chaotic itinerancy between attractor ruins



representing synchronization and de-synchronization states. It also appears that this
behavior can be regarded as chaotic itinerancy between attractor ruins (which may be
described by Milnor attractors), each consisting of an all-synchronization state, different
kinds of metachronal waves, and large chaotic orbits. Furthermore, such chaotic
itinerancy accompanies the organization and reorganization of dynamic cell assemblies.
There are several examples that are believed to provide a link between physical
behavior and the representation of mental states using chaotic itinerancy. These
examples include dynamic memory (Tsuda, Koerner, and Shimizu 1987, Tsuda 1991,
Tsuda 1992), episodic memory formation (Tsuda and Kuroda 2001), and category
formation (Tsuda 2001). The use of chaotic itinerancy to study category formation
might elucidate a typical feature of diversity expressed by chaotic itinerancy, as
described by Kampis.

Category formation can be characterized by the following two kinds of ambivalence.
We call the first kind identification and discrimination ambivalence. In this case,
"similar" patterns, objects, and concepts must be classified in accordance with their
similarity as belonging to the same group. Here, similarity can be represented by a
certain metric. Yet, it must be possible to discriminate even similar patterns, objects, and
concepts. The second kind, which we call invariance and variance ambivalence, appears
especially in relation to learning over periods of time that are longer than those expected
in the case of the first ambivalence. For stability of cognition, the invariance of
categories is required, but to allow the learning process, a variance of classification, that
IS, a change of categories is necessary.

Our assertion is that chaotic itinerancy can represent the types of ambivalence described
above, in principle. In typical chaotic itinerancy, the attractor ruins linked by chaotic
transitory orbits do not necessarily constitute all the ruins, because of the dependence of
statistical properties on the initial conditions. Some particular orbit linking several
attractor ruins may form the largest category of series of events, i.e., an episode, with
each attractor ruin representing a distinct event. This largest category consists of several
sub-episodes, some of which are "similar" and some of which are different. Actually, we
found such category formation in a Cantor code with chaotic itinerancy as inputs (Tsuda
2001, Tsuda and Kuroda 2001). This is possible, because chaotic itinerancy contains
history-dependent information of a series of events (Kaneko 1998). This scheme of
coding guarantees both identification and discrimination.



From the above findings, it is seen that chaotic itinerancy may be a key type of dynamic
motion that can describe ever-changing behavior with stability, which all evolving
systems should exhibit. This is nothing but an evolutionary system that Kampis
describes as a self-modifying system (Kampis 1991). In contrast to the conventional
concept of a system, accompanying to which a system consists of well-defined units,
with each unit assumed to possess a definite function, we consider a self-modifying
system to be a life system, in which a functional unit is formed via interactions between
internal states of the system. Such a system is precisely that which we have considered a
‘complex system’ (Kaneko and Tsuda 2001).

There is sufficient evidence supporting such a specific structure of complex systems.
Among others, cell differentiation and the organization of functional modules in the
brain are typical examples. Every functional module in the brain, like the visual cortex,
is connected to other modules in its living state, not only structurally but also
functionally. In other words, functional modules are not ready-made but, rather,
order-made. They are formed almost-simultaneously when a total system becomes
functional. This type of formation brings about a difference between the responses of
organized units in the cases that these units are isolated and are embedded in the system.
Furthermore, such functional modules can vary in structure and function. A similar
concept was proposed as the concept of components (Rosen 1991) and as a dynamic
cell assembly (Marlsburg 1981, Fuijii, Ito, Aihara, Ichinose, and Tsukada 1996).

These characteristics are those of ever-changing systems, which are typically described
by chaotic itinerancy and may well be related to the flexible change of mental states.
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