
June 17, 2014 9:30 Chaos, Information Processing and Paradoxial Games:. . . 9in x 6in 1st Reading b1867-ch17 page 1

Chapter 17

Logic Dynamics for Deductive Inference
Its Stability and Neural Basis
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We propose a dynamical model that represents a process of deductive5

inference. We discuss the stability of logic dynamics and a neural basis6

for the dynamics. We propose a new concept of descriptive stability,7

thereby enabling a structure of stable descriptions of mathematical8

models concerning dynamic phenomena to be clarified. The present9

theory is based on the wider and deeper thoughts of John S. Nicolis. In10

particular, it is based on our joint paper on the chaos theory of human11

short-term memories with a magic number of seven plus or minus two.12

1. Introduction13

I first met John S. Nicolis in May 1983 when Hermann Haken organized14

the Synergetics meeting on the brain at Schloss Elmau in Germany.115

John gave a talk entitled “The role of chaos in reliable information16

processing”, which was very impressive.2 Surprisingly, John knew of my17

several papers on the mathematical modeling of chaos and bifurcations18

in the Belousov-Zhabotinsky reaction, coauthored with the late Professor19

Kazuhisa Tomita, and of the paper on noise-induced order, coauthored20

with my younger colleague in the Tomita laboratory, Kenji Matsumoto.21

John was very enthusiastic about discussing on these matters with me, and22

about explaining his own ideas on chaotic information processing.1,3 His23

ideas on this subject were fascinating and immediately attractive to an24

adolescent and ambitious mind.25

After returning to Japan, and being influenced by his deep and generous26

thoughts, I developed an idea how to calculate information storage capacity27

1
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in chaotic dynamical systems. I calculated its values for Rössler and Lorenz1

attractors and sent these results to John by airmail. About 20 days2

later, I received a return airmail containing a draft for a joint paper. We3

then exchanged several airmails to confirm our mutual agreement about4

fundamental ideas, calculation results, and the organization of the paper.5

Finally, we submitted the paper to the Bulletin of Mathematical Biology,6

which became our first joint paper.4 In the paper, we treated the magic7

number “seven plus or minus two” which was recognized as the capacity of8

human short-term memory in terms of both the Lyapunov spectrum and9

the fluctuations of local divergence rates in chaotic dynamical systems.10

Concerning the information structure of chaos, Oono5 first studied11

Kolmogorov-Sinai entropy in chaotic dynamical systems, and Shaw6 pro-12

posed the concept of information flow in chaotic dynamical systems.13

Stimulated by the studies of Oono, Shaw, and John Nicolis, Matsumoto14

and I also studied the information structure of chaotic behavior, for which15

we proposed the concept of the fluctuations of information flow, and a16

method of calculation for such fluctuations in terms of conditional mutual17

information in a bit space.7–9 We also applied these information-related18

theories to the information processing in the brain, via the framework of19

hermeneutics of the brain.10,1120

With respect to the mathematical modeling of the brain and mind in21

the field of cognitive neuroscience, various levels of description from the22

single neuron level to the level of a society of brains have been proposed so23

far. John Nicolis’ studies covered all levels of description. He also addressed24

essential but hard problems such as bridging between neural activity and25

cognition.1,12,14–16 The nonlinear dynamics of games that John Nicolis26

treated, can be classified as a study at the level of cognitive neurodynamics.27

Later, it turned out that this approach, in addition to our own approach,4 is28

similar to that of Grim and Mar,17–19 which describes the inference process29

with fuzzy logic in terms of discrete-time dynamical systems.30

My own interests have lain in the dynamic relationship between memory31

and thoughts.20 It is well known that episodic memory is stored in the32

temporal cortex after the episodic signals pass through the hippocampus,33

which is responsible for the transformation from short-term to long-34

term memory. Working memory operates over a few seconds, in order35

to manipulate information, to make a temporary storage, and to focus36

attention via interactions among the prefrontal cortex, cingulate cortex,37

parietal cortex, and basal ganglia. Therefore, working memory includes38

the short-term memory related to inference processes, such as the depth39
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of recursive inference. Our joint paper on the magic number “seven plus1

or minus two” was about a chaotic theory for working memory in this2

sense. Furthermore, now it turns out that the prefrontal cortex, particularly,3

the dorsal lateral prefrontal cortex, is responsible for inference based4

on conditional associations.21 On the other hand, deliberative decision-5

making has been observed in human and some animal behavior during a6

learning process.22 Human beings and even animals necessarily deliberate7

at a decision point in space and time to make a true judgment. This8

process, from deliberation to final judgment, must involve the internal9

dynamic processing of truth values for the hypothesis posed, based on past10

experience, that is, based on memories.11

In digital computer systems, “inference processes” can be performed in12

terms of a computation unit and a bit space where both computational13

results and external data are memorized, with computation and memory14

operating separately. In other words, the memory system and the inference15

system can be separated in digital computers. However, in human and16

animal brains, it seems that these two systems do not operate separately.17

The two systems interact with each other, particularly those interactions18

between the short-term memory of events and the sequence of inferences19

on those events that typically result in episodic memory. In this respect, it20

is hypothesized that episodic memory is a representation of a prototype of21

inference.22

In relation to this hypothesis, we have proposed a dynamic theory23

for episodic memory, the Cantor coding theory. In this theory, dynamic24

transitions of neural activity states such as chaotic itinerancy in CA3 of25

the hippocampus play a role in reconstructing a series of episodes, and26

contraction dynamics in CA1 of the hippocampus can form Cantor sets27

in the state space of neural activity, each element of which represents an28

episode.20,23–25 This theory has been proven in a rat slice experiment,26,2729

and it is anticipated that it will include changes via synaptic learning,30

such as Tsukada’s learning rule.28–30 Although the theory has not yet31

been proved in human and intact animal brains when undergoing episodic32

experiences, it suggests a similar coding scheme, using chaos and fractal33

geometry for the neural representation of human and animal inference.34

Here one can see John Nicolis’ fundamental ideas on the interplay between35

chaos and fractal.1336

Historically, research on inference has developed in association with37

research on thought processes, going back to, for instance, Aristotle, Hobbs38

and Leibniz. However, George Boole’s ideas31 introduced a radical new39
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approach. He considered the laws of thought, derived the binary values,1

0 and 1, and tried to clarify the relationship between logic and probability2

in terms of mathematics. His thoughts influenced the research of Turing,3

McCulloch and Pitts, and von Neumann on the realization of human4

thought by means of computation in digital computer or neural networks.5

The present paper treats typical deductive inference processes in relation6

to dynamical systems. It can be considered as an essay on the dynamics7

of thought. We start with the origins of Boolean logic and try to extend8

Boolean logic to the area of cognitive neurodynamics, or mental movement,9

introducing a discrete time step to represent the neural delays stemming10

from both the absolute refractoriness of neurons and the delayed feedback11

in neural networks. The discrete-time dynamical systems introduced in12

this way are similar to those treated by Grim and Mar.17–19 We describe13

this issue with inference processes about typical ambiguous statements in14

Section 2. In Section 3, we further treat continuous-time dynamical systems15

as a limit of infinitesimal time lapses in discrete-time dynamical systems.16

In Section 4, a neural basis for finite time is treated. In Sections 5 and 6,17

we treat description dynamics and its stability, respectively. Section 7 is18

devoted to summary and discussion.19

2. Logical Inference and “Step Inference”20

We start with a brief review of the origin of binary logic; that is, classical21

logic. George Boole invented binary logic and published a book31 entitled22

“An investigation of the laws of thought” in 1854, in which he queried23

the origin of thought. He identified thought as determining the truth or24

falsehood of given statements, and he tried to construct a mathematical25

basis for logic and probabilities, thereby trying to make clear the laws of26

human intellect. For the first time, he tried to deduce the binary values 027

and 1, using the following procedure. He first asked whether, for example,28

“Blue Blue” is “Blue”. If so, xx = x, where “Blue”, and the symbol “=”29

denotes the identity of classes. In this symbolic expression, he represented30

the identity of the class of blueness. Because human inference is based on31

certainty in the identification of object classes, he introduced the product32

operation in juxtaposition of, regarding a variable as a certainty. He then33

obtained the algebraic equation, x2 = x or x(1 − x) = 0. The solutions of34

this equation are simply 0 and 1. These binary values can be considered the35

truth values of the statement that “Blue Blue” is “Blue”. For him, “1” and36

“0” implied “God” and “the others”, respectively. He therefore considered37
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that a reconstruction of the world in terms of these binary values is possible,1

where the world is typically represented by mathematics.2

Here we extend the Boole’s method by the explicit introduction of a
unit of time as a unit in the process of inference. To do this, we introduce
a dynamical system associated with the inference process that determines
the truth values of statements, as in both Grim’s framework17,19 and our
framework.32 In logical inference, obtaining consequence from premise is
usually assumed to be instantaneously performed, but it will take a certain
time in the human inference process. Furthermore, we ordinarily use a
recursion process to determine the truth value of a given statement. In
other words, we repeat a combined process of two subprocesses: deduction
from premise to consequence according to logic, and substitution of the
consequence with the premise for the next step of inference. Let the premise
be P , and let the consequence be C. There are two main ways to introduce
a time step n: in the process from premise to consequence, and in the
process of substitution of consequence with premise. For the former case,
we obtain

Xn+1(C) = F (Xn(P )) (1a)

Xn+1(P ) = Xn+1(C) (1b)

whereas for the latter, we obtain

Xn(C) = F (Xn(P )) (2a)

Xn+1(P ) = Xn(C) (2b)

where X denotes the truth value of the statement, and F denotes the3

transformation of the truth value for the deductive inference.4

For either case, we obtain

Xn+1(C) = F (Xn(C)) (3)

In some special cases, this reduction in Eq. (3) does not lead to a correct5

decision, because the two processes given by Eqs. (1) and (2) lead to6

different truth values32 (see also Section 4). However, in the present paper,7

we consider the reduction by Eq. (3) as giving a correct decision. Let us8

call this type of inference a step inference.9

Now, consider a dynamical system of inference for Boole’s blue. It is10

straightforward to obtain a corresponding map.11
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(1) The statement of Boole’s blue.

Xn+1 = X2
n (4)

Here, X is a real number in [0, 1], representing a truth value. The1

binary values 0 and 1 that Boole derived are obtained as fixed points2

in this dynamical system. However, the asymptotic solution is X = 0,3

which is an attractor. In the following, we will treat dynamical systems4

corresponding to slightly more complex statements, which typically5

seem to show the processes of inference in human mind, as well as6

the inference process of Boole’s blue. Here, we use similar statements7

to those that Grim used,19 where he adopted fuzzy logic and obtained8

chaotic behavior associated with a step inference.9

(2) This sentence is false. Let this statement be denoted by X . The
statement can then be replaced by X is false. Hereafter, we use the
same symbol for the truth value as for the statement. The discrete-
time dynamical system, that is, the map, which represents the inference
process of determining its truth value, is given by the equation

Xn+1 = 1 − Xn (5)

The fixed point is X = 1/2, which cannot be achieved in classical logic10

because of the law of the excluded middle. Of course, if one extends11

the logic to multivalued logic, X = 1/2 is acceptable as an “I don’t12

know” state. Restricted to classical logic, this equation of motion,13

Eq. (5), has an oscillatory solution; that is, a period-two solution,14

{Xn = 0, Xn+1 = 1}. In classical logic, therefore, this statement is15

undecidable. If one extends the logic to multivalued logic, the truth16

values satisfying the equation of motion are infinitely many, that is,17

{Xn = s, Xn+1 = 1 − s, (s ∈ [0, 1
2 ])}, all of which are period-two18

solutions. The result of a step inference is equivalent to that of logical19

inference.20

(3) This sentence is true. Let this statement be denoted by X . The
statement can then be replaced by “X is true” Similarly, the discrete-
time dynamical system is given by the equation,

Xn+1 = Xn (6)

In classical logic, the solutions are given by the fixed points of the21

dynamical system, X = 0 and X = 1. This statement is therefore22

indeterminate. Extending to multivalued logic, all numbers from 0 to 1
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represent solutions. The result of a step inference is equivalent to the1

one in logical inference.2

(4) The sentence X: the next sentence Y is false. The sentence Y : the
previous sentence X is false. The equations of motion determining these
truth values are as follows:

Xn+1 = 1 − Yn (7a)

Yn+1 = 1 − Xn (7b)

The fixed points associated with classical logic are (X, Y ) = (1, 0) and3

(X, Y ) = (0, 1) Extending to multivalued logic, all numbers X, Y =4

1 − X ∈ [0, 1] represent the solutions of Eq. (7). The consequence is5

that a step inference is equivalent to a logical inference, both of which6

lead to indeterminacy. However, one can find a new solution, that is7

easily obtained by a step inference. This other solution of Eq. (7)8

is oscillatory, such that {(Xn, Yn) = (0, 0), (Xn+1, Yn+1) = (1, 1))}.9

This solution has been excluded in the conventional consequences of10

logical inference. Because this solution represents undecidability in the11

statement, the consequence allows a higher level of contradiction, in12

that the statement implies both undecidability and indeterminacy. Two13

sentences X and Y are contradictive in the sense of conventional logical14

inference, because neither X ∩ Y nor ¬X ∩ ¬Y hold, where denotes ¬15

negation. However, under a step inference, these two sentences are not16

contradictive, because both because both X ∩ Y and ¬X ∩¬Y hold at17

different time steps, because of the presence of a period-two solution.18

Because the consequences for the truth value of a pair of these sentences19

are different for logical and step inference it is worth studying the cause of20

this difference. We will treat this issue in the next section.21

3. Introduction of Infinitesimal Time:22

“Differential Inference”23

Let us assume that Eq. (7) was derived by Euler’s method applied to certain
differential equations. Using this assumption, we will find the differential
equations corresponding to the inference process of the truth value of the
pair of sentences mentioned in the previous section. From Eq. (7), Xn+1 −
Xn = 1 − Xn − Yn and Yn+1 − Yn = 1 − Xn − Yn obviously follow. If a
unit time, that is, a time step 1 is viewed as a time step corresponding
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to an infinitesimal time scale, then we can find the following differential
equations.

dX

dt
= 1 − (X + Y ) (8a)

dY

dt
= 1 − (X + Y ) (8b)

This is, of course, a first-order approximation to the difference equations
in Eq. (7), in terms of differential equations. In fact, the set of differ-
ential equations equivalent to the set of difference equations given by
Eq. (7) is the first order of the infinitely many simultaneous differential
equations that include those having the same terms in the right hand
side of the equations as those in Eq. (7). This relationship between the
two expressions, in terms of infinite-dimensional differential equations
and finite-dimensional difference equations, may stem from the following
features of the shift operator e

∂
∂n , where n is supposed to be extended to

the real33,34:

Zn+1 = e
∂

∂n Zn =
(

1 +
∂

∂n
+

1
2!

∂2

∂n2
+ · · · 1

k!
∂k

∂nk
+ · · ·

)
Zn (9)

Applying the expression (9), the original difference equation, Zn+1 −1

Zn = f(Zn), can be transformed via infinite-dimensional differential2

equations in the following way.3

Set Z
(1)
n = ∂

∂nZn, which provides the first equation. The second equation4

is obtained by setting Z
(2)
n = ∂

∂nZ
(1)
n . Similarly, for the kth equation, Z

(k)
n =5

∂
∂nZ

(k−1)
n . Finally, ∂

∂n

(
Zn + 1

2!Z
(1)
n + · · · + 1

(k+1)!Z
(k)
n

)
= f(Zn), (k → ∞).6

Because each order of derivative becomes a base for a j + 1 dimensional7

vector space that comprises linear combinations of derivatives up to the8

jth order, all the variables Z
(i)
n (supposing Zn = Z

(0)
n ) except for the final9

variable are independent of each other.10

Here, we use a first-order approximation of this formula as the above
differential approximation, such as

dZ

dt
= f(Z) (10)
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using the same symbol t as in Eq. (8) in place of n, and replacing ∂ with d

for the derivative. The second approximation will be

dZ

dt
=Z(1), (11a)

1
2

dZ(1)

dt
= − Z(1) + f(Z). (11b)

The third approximation will be

dZ

dt
=Z(1), (12a)

dZ(1)

dt
=Z(2), (12b)

1
3!

dZ(1)

dt
= − Z(1) − 1

2
Z(2) + f(Z) (12c)

and so on.1

It is clear that the fixed points in any order of differential approximations2

are the same as in the original difference equations. The stability of3

these fixed points is, however, nontrivial when they change and how they4

change, even considering the fact that they change within the limit of the5

approximation.6

The asymptotic solution of Eq. (8) is X + Y = 1, and the period-7

two solution disappears. In classical logic, this means that (X, Y ) = (1, 0)8

or (0, 1); that is, it is an indeterminate statement. In other words, the9

consequence of conventional logical inference is recovered by eliminating10

an undecidable solution. Let us call this type of dynamical inference by11

differential equations a differential inference.12

The consequence by differential inference implies that Sentence 4 in13

the previous section includes contradiction in a sense of logical inference,14

which can be described by continuous-time dynamical systems defined with15

infinitesimal time, but escapes this type of contradiction in a step inference,16

which can be described by a discrete-time dynamical system that introduces17

a finite width of time such as a time step. This method of overcoming the18

difficulty, namely contradiction, is a consequence of the appearance of a19

period-two solution in the inference process.20

Dynamical systems in continuous time corresponding to the other21

sentences yield the solutions for truth values obtained by logical inference.



June 17, 2014 9:30 Chaos, Information Processing and Paradoxial Games:. . . 9in x 6in 1st Reading b1867-ch17 page 10

10 I. Tsuda

For Sentence 1, the asymptotic solution in differential inference is X = 1.1

For Sentence 2, it is X = 1/2, which implies ambivalence or no solu-2

tion in classical logic. For Sentence 3, it is X = const., which implies3

indeterminacy.4

Variables treated here are truth values of statements, which imply5

certainties of decision-making via deductive inference, and thus time-6

varying certainties were studied. Correspondingly, decision-making in self-7

referential paradoxical games was studied by Nicolis et al.,35 where8

time-varying probabilities of cooperation were described by differential9

equations, and those equations possessed fixed points as the solutions10

representing contradictory states.11

4. The Neural Basis of Finite Unit Time12

As shown in the previous sections, the introduction of a finite unit of time in13

inference processes yields an oscillatory solution for truth values, thereby14

avoiding contradiction. One of our assertions here is that human beings15

adopt step inferences in their decision making in daily life. This idea can be16

applied to experiments on animal behaviors based on an inference process,3617

such as transitive inference21: if A → B and B → C, then A → C, where18

the arrow (→) denotes implication. An animal’s ability of transitive infer-19

ence may be a basis for human deductive inference or syllogism. It may also20

be a basis for decision making, even in circumstances involving inconsistent21

events, where inference and decision making must be performed via step22

inference.23

A question arises: what is the origin of the unit of time in step inference?24

The most basic time step in neural systems is the absolute refractory period25

of a single neuron. At the network level, delayed-feedback connections can26

yield a unit of time. Consider the following two typical cases: Case (a),27

where the absolutely refractory period is rate-determining, and Case (b),28

where the feedback delay time is rate-determining.29

We further introduce relative refractoriness, as in Aihara’s neuron30

model.37 One merit of using this model is that the model not only includes31

an absolute refractory period as a unit time step but also includes relative32

refractoriness in the form of an exponential decay of memory, which pro-33

duces differences in the effects of delayed feedback. We can then obtain the34

following equations of motion for the neural activity of a recurrent neural35

network.36
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Case (a):

xi
n+1 =

∑
j

wijy
j
n (13)

yi
n+1 = f(xi

n −
n∑

k=0

bkyi
n−k − θi) (14)

where f denotes a transformation function f from input to output, wij is1

the coupling strength from the jth neuron to the ith neuron, b (0 < b < 1)2

is the decay rate of memory, and θi is the threshold for the ith neuron.3

Let X i
n be the effective membrane potential of the ith neuron at time n.

The overall equation rewritten in terms of is then as follows:

X i
n+1 = bX i

n − f(X i
n) +

i∑
n

wijf(X i
n)

− b

n∑
j

wijf(Xj
n−1) − (1 − b)θi (15)

This results in a chaotic neural network.374

Case (b):

xi
n+1 =

∑
j

wijy
j
n (16)

yi
n+1 = f(xi

n+1 −
n∑

k=0

bkyi
n+1−k − θi) (17)

Let X i
n+1 be the effective membrane potential of the ith neuron at time

n + 1. The overall equation rewritten in terms of is then as follows:

X i
n+1 = bX i

n − f(X i
n+1) +

∑
j

wijf(Xj
n)

− b
∑

j

wijf(Xj
n−1) − (1 − b)θi (18)

This is a bootstrap type of equation of motion. In other words, one should5

solve the functional equation, X +f(X) = a previously calculated value, at6

each time step. This may also result in another chaotic neural network. In7

fact, if f(X) is a sigmoid function and its derivative at the origin is greater8

than 1, then Case (b) will yield much more stable activity of neurons than9

Case (a). Otherwise, it may yield unstable dynamics, giving rise to chaotic10
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behavior in the overall network, as for Case (a). However, with respect to1

the appearance of future time on the right-hand side of the equation, it2

is still questionable whether this future time would bring about essentially3

new features in the dynamic behavior, different from the formal differences4

between Ito and Stratonovich integrals in stochastic calculi.5

5. Description Dynamics for External Phenomena6

In the previous sections, we assert that human and even animal inference7

is performed in the form of step inference, and the origin of the unit of8

time in such inference lies in an absolute refractory period or in a delay9

time associated with feedback connections. Human beings and animals10

infer a truth value for an event after transforming that event in the form11

of descriptions; that is, sentences. So far, we have restricted ourselves to12

treating the process after such transformations. In this section, we treat13

the dynamics of description that may occur in the brain before and after14

the evaluation of the truth value for the event.15

Let us assume that phenomena occurring in the external environment16

can be described by dynamical systems. In other words, we assume that17

even when deterministic systems are perturbed by external noise, the18

overall dynamics can be described by skew product transformations of the19

dynamical systems and small- amplitude chaotic systems producing a given20

stochastic process. Internal dynamics in the brain can be active in describing21

these external dynamics X(t). Let us denote the dynamics associated with22

such a description by h(X(t)). There could be two extreme states for23

such a description: completely adaptive state such as h(X(t)) = X(t) and24

an indifferent or “autistic” state such as h(X(t)) = const. The actual25

states of the internal description must be intermediate between these26

extremes.27

To describe the dynamics of the intermediate states more explicitly, let
us adopt discrete-time dynamical systems for both the internal and external
dynamics. For the external dynamics, we adopt, Xn+1 = F (Xn) where Xn

is an element in N -dimensional vector space, subscript n is a discrete time
step, and F is a differentiable map. When we observe and describe this type
of dynamical system, the dynamics of the internal description hn+1(F ),
which represents some neural activity in the brain, can be described by
another map F̃ . The description dynamics is therefore as follows:

hn+1(F ) = F̃ (hn) (19)
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More explicitly, representing the above formula in terms of external
states:

hn+1(Xn+1) = F̃ (hn(Xn)). (20)

In this formula, the above two extreme states are formulated as1

follows.2

(1) A completely adaptive state is formulated by obtaining an invariant3

h under the condition that F̃ =F . A trivial solution is given by4

h(X) = X , which implies making a copy of the external world.5

(2) An indifferent state is formulated under the condition that F̃ =X ,6

which provides the fixed points for the internal dynamics. Then,7

h(Xn+1)= hn(Xn), that is a fixed description, which implies an inde-8

pendent description of the external world.9

The actual state provided by the description dynamics will be obtained
as a solution for the following functional equation of motion:

hn+1(F (Xn)) = (1 − ε)F (hn(Xn)) + εhn(Xn). (21)

where ε is a parameter representing a balance between the above two10

extreme states, which can be a bifurcation parameter. This equation covers11

the situation where the right-hand side of the equation represents F̃ .12

It should be noted that this functional equation of motion can represent
useful systems, such as the Kataoka-Kaneko functional map,38 which can be
realized by the condition that F (Xn) = Xn externally and F = h internally.
In such a case, we would obtain

hn+1(Xn) = (1 − ε)hn(hn(Xn)) + εhn(Xn). (22)

This functional map has been further investigated mathematically by13

Takahashi and Namiki, who proved the existence of a hierarchical structure14

of periodic solutions.39–4115

In the Kataoka-Kaneko formula, the presence of the self-referential term16

of description in Eq. (22) is essential for representing the complexity of the17

dynamics, but it makes analysis difficult. This may imply the impossibility18

of neural activity dealing directly with self-referential descriptions. When19

neural systems process a self-referential description, they may first have20

to make a copy of the object of self-reference and then refer to this copy.21

This two-stage formulation can be realized mathematically in the proof22

of Gödel’s incompleteness theorem through the processes of projecting23
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mathematical statements to natural numbers and of referring to meta-1

mathematical statements by providing mathematical statements about such2

numbers. The presence of mirror neurons in animal brains42 or mirror-3

neuron systems in human brains43 may also be a realization of the above4

two-stage formulation in brains, because mirror neurons, or mirror-neuron5

systems, can be activated, not only by behavior in others similar to one’s6

own behavior, but also by one’s own behavior. This can be represented in7

a dynamical systems model.448

6. Descriptive Stability9

Combining descriptive dynamics with the dynamics of truth value x, some10

functionof G(x) of x implies a certainty of description with respect to the11

truth value. The dynamics of this certainty described by functional maps12

such as those mentioned in the previous section can therefore describe13

the dynamics of decision making. One of the important questions will14

be the stability of such a description. We have tried to formulate it in15

a similar way to the definition of the pseudo-orbit tracing property of16

dynamical systems.32 The pseudo-orbit tracing property is defined following17

Robinson.4518

Let h be a continuous map on a compact space M . For x ∈ M , {h(i)(x)}i19

represents an orbit on M . The observed orbit is, however, not always20

identical to the dynamical orbit, because of round-off errors in computers21

or external noise or perturbations in laboratory experiments. Let {yi}i be22

an observed orbit. If there exists a > 0 such that for any i, h(yi−1) is in an23

α-neighborhood of yi, then the observed orbit is called an α-pseudo-orbit.24

If for some x ∈ M there exists β > 0 such that for any n, h(n)(x) is in a25

β-neighborhood of yn, then the pseudo-orbit {yi}iis β-traced by x. If any26

α pseudo-orbit is β-traced, then the dynamical system (h, M) possesses a27

pseudo-orbit-tracing property. The pseudo-orbit-tracing property indicates28

the stability of dynamical systems associated with observations, which is29

related to structural stability.4630

The stability of dynamical systems associated with descriptions can be31

defined in a similar way. Here, we use the same symbols as those used32

in the previous section. We have one finite-dimensional dynamical system33

(F, L) and another infinite-dimensional dynamical system on function space34

(F̃ , W ), where h ∈ W . If there exists α > 0 such that F ◦ h−1
i−1 ◦ F̃ i−1 is in35

an α-neighborhood of F̃ i for any i, then we call F̃ an α pseudo-dynamical36

system. If for some description g in description space, which is assumed37
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to be compact, there exists β > 0 such that for any n, Fn ◦ g−1 is in a1

β-neighborhood of F̃n, then the pseudo-dynamical system F̃ is β-traced by2

g. If any α pseudo-dynamical system is β-traced, then the dynamical system3

(F, L) possesses a pseudo-dynamical system-tracing property. We would like4

to propose the concept of descriptive stability, using this pseudo-dynamical5

system-tracing property.6

When we try to apply this new stability concept to the inference pro-7

cesses defined by step inference, we have to assume the external dynamics8

F , that is the subject for the inference dynamics in our mind. For example,9

F could describe some reaction of macromolecules for the activation of10

receptors. In such a case, we would describe the activity of receptors such11

that the receptors are active when a macromolecule A is attached. The truth12

value of this statement, for example, would depend on the probability of13

that attachment, which may change over time. We can obtain a description14

of truth values by a map h. Its dynamics could be discussed by, say,15

the introduction of logic dynamics, represented F̃ by. We now assume16

that the external dynamics is described by differential equations. We also17

assume that human minds will always use step inferences. The external18

dynamics that can then be formulated by Sentences 1–3 in Section 219

possesses descriptive stability, because for external dynamics F , the internal20

description via step inference F̃ provides the same result as F . However,21

the dynamics corresponding to Sentence 4 has an unstable description,22

because a step inference F̃ can provide a completely different result from23

F . On the other hand, if the external dynamics is described by difference24

equations, then the external dynamics corresponding to Sentences 1–4 do25

possess descriptive stability.26

7. Summary and Discussion27

Motivated by George Boole’s way of thinking about Boolean logic and28

by John Nicolis’ way of thinking about chaotic information processing,29

we obtained the dynamics associated with inference processes via the30

introduction of the concept of step inference, which is similar to Grim’s31

theory. We first studied the relationship between logical inference and step32

inference, finding that differential inference as an infinitesimal time-step33

version of step inference can act as a dynamical model for logical inference.34

We also found typical examples for which step inference produced different35

consequences from logical inference. Within the framework of step inference,36

contradiction in logical inference can disappear by virtue of the appearance37



June 17, 2014 9:30 Chaos, Information Processing and Paradoxial Games:. . . 9in x 6in 1st Reading b1867-ch17 page 16

16 I. Tsuda

of a finite unit of time, which might be a basis for natural behavior in1

living systems. However, this finding does not preclude that game-theoretic2

inference described by differential equations can realize contradictory states.3

Indeed, J. S. Nicolis showed35 that differential inference for decision-making4

in self-referential paradoxical games allows contradictory states such that5

both players could win or lose if state dependent probabilities of cooperation6

are introduced. Contradictory states are here realized as an alternative7

switching between two fixed points expressing that sentences are true or8

false, which typically corresponds to the solutions of Eq. (7).9

We further provided a neural basis for this kind of finite unit of10

time. In particular, we treated two typical cases, formulated by different11

types of equations of motion. Contrary to the conventional viewpoint,12

delayed feedback may yield a super-stable steady motion, to the extent13

that discrete-time dynamics modeled by difference equations is adopted,14

which support step inference.15

Furthermore, we formulated stability of description, introducing the16

new concept of descriptive stability. We provided concrete examples of17

descriptive stability in relation to the logical sentences posed as typical18

objects of inference.19

Here, we treated only some examples of deductive inference. However,20

the theory can be extended to other complex processes of inference, such21

as procedures whereby applied mathematicians try to make mathematical22

models of natural phenomena. In modeling the dynamics of a certain23

phenomenon, they first try to create a clear description in terms of sentences24

for the dynamic process of that phenomenon. They then transform the25

description into equations that correctly represent the dynamic process26

that should be the essence of the phenomenon.47 Therefore, it is necessary27

to consider the descriptive stability of the phenomenon concerned. In28

particular, it should be noted that choosing which differential and difference29

models should be adopted is often crucial because a sentence-based30

description of the dynamic process is consistent with step inference but31

is not always consistent with logical inference.32

It should also be noted that chaotic behaviors, which can appear in33

both step inference and differential inference, could play an important34

role in decision-making. Chaotic dynamics of truth values constitute an35

invariant set concerning certainties of inference process. Therefore, in the36

convergent process of certainties, we observe deliberative decision-making37

during transient motion of the dynamics, and also convergent thinking with38

probabilities in an asymptotic stage of the dynamics. Thus chaos plays a39
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role in providing flexibility of decision-making even if the system concerned1

includes contradiction, as clearly stated3 by John Nicolis.2
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