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Abstract. Although it is generally recognized that“ interneurons gen-
erate a variety of synchronous inhibitory rhythms in the neocortex...”
(J. R. Gibson et al. ) and they* may play a key role in coordinating cor-
tical activity...” (M. Galarreta & S. Hestrin), little is known how they
behave in the in vivo neocortex. A salient property of some interneu-
ron systems in the neocortex is that they are coupled by gap junctions
(GJs) - a kind of electrical couplings very intensively between the same
type of interneurons. In our previous studies, we reported the theoretical
possibility that a class of neuron systems may exhibit spatio-temporal
chaos when they are coupled by GJs, while the individual neurons, when
isolated, exhibit only simple repetitive firings. This dynamics is emer-
gent, and unveils only when cells are coupled by GJs. Mathematically,
this phenomenon could be an expression of chaotic itinerancy among
pseudo-attractors (or, attractor ruins). In view of the ubiquity of GJs -
there are at least five distinct interneuron systems coupled by GJs in the
six layers of the neocortex, and in view of the significance of the concept
of chaotic itinerancy in memory dynamics we give in this lecture a review
about general property and collective dynamics of GJ-coupled neuronal
systems.

1 Introduction

1.1 Background

Recent physiological data recognizes the massive presence of gap junctions (GJs)
among interneuorns in the neocortex, which poses serious questions about the
organization of neocortex, the possible role of interneurons in neocortical rhythm
generations and the role of interneurons in cognitive functions. In our previous
studies (Nakano et al., 2003 [21]; Fujii and Tsuda, 2004 [8]), we reported the the-
oretical possibility that a class of neuron systems may exhibit spatio-temporal
chaos when they are coupled by GJs, while the individual neurons, when iso-
lated, exhibit only simple repetitive firings under injected background currents.
This dynamics is emergent, and unveils only when cells are coupled by GJs.
Mathematically, this phenomenon could be an expression of chaotic itinerancy
among pseudo-attractors (or, attractor ruins), which could be characterized as



transiently synchronized states. In view of the ubiquity of GJs - there are at
least five distinct interneuron systems coupled by GJs in the six layers of the
neocortex, and in view of the significance of the concept of chaotic itinerancy
and transient synchrony in memory dynamics (Tsuda and Fujii [32], this issue),
we give in this lecture a review about general property of collective dynamics
in GJ-coupled neuronal systems. The emphasis here is on the itinerant behavior
made by model neuron systems of realistic cortical neurons.

Gap junctions exist in, as mentioned in the above, at least five distinct in-
terneuron systems in the six layers of the neocortex. Among FS (fast spiking)
neurons in the layer 2/3, among FSs and among LTS (low threshold spiking) neu-
rons in the layer 4, among FSs in the layer 5/6. Recently, a new member joined
to this GJ-coupled interneuron groups: multipolar bursting (MB) interneurons
in the layer 2/3. (Blatow et al., 2003 [1].) Gap junctions are not only ubiquitous,
but massive ([9], [10], [29]). They form distinct networks, and some of them pos-
sess chemical synaptic connections, too. Although it is generally believed that

a (gap junction-coupled) network of FS cells in the neocortex may play a key
role in coordinating cortical activity...” (M. Galarreta & S. Hestrin, 1999 [9]),
or" interneurons generate a variety of synchronous inhibitory rhythms in the
neocortex...” (J. R. Gibson et al., 1999 [10]), little is known how those interneu-
rons collectively behave when coupled by GJs in a massive way. In view of the
fact that various distinct interneuron systems are involved in GJ couplings, one
may be led to ask such general questions as: what kind of ionic channel proper-
ties or, what kind of nonlinearity in mathematical terms may lead to what kind
of collective dynamics when they are coupled by GJs? In particular, one may
ask what kind of neuronal processes may give rise to such an emergent chaotic
dynamics ? These questions, together with their possible role in cognitive func-
tions, have not been well understood from both mathematical and physiological
points of view.

We may also envisage possible relations with some dynamical phenomena
observed in the neocortex, e.g., transient synchrony and fluctuation in local field
potentials (LFP) ([11]). See, also discussions in Tsuda and Fujii [32].

1.2 Gap Junctions in the Neocortex - a Quick Review

It is already three decades ago that the presence of gap junctions in primates
neocortex was firstly reported ([28]). Very recently it is generally recognized that
the GJs are really massive and wbiquitous in the neocortex - but only among
interneurons. (See, e.g., [1], [9], [10] and [29]).

1. GJ couplings exist in the layers 2/3, 4, and 5/6. In the layer 2/3, there are
two distinct systems: FS and MB interneurons. MBs may send chemically-
induced spikes to FSs, but not vice versa (Blatow et al. [1], 2003). The layer 4
has two distinct GJ-coupled systems: FS and LTS-systems. The two systems
may also be coupled by gap junctions each other, but the couplings are not
so dense ([9], [10], [29]). The layers 5/6 include a GJ-coupled FS interneuron
system.



2. GJ-couplings are neuron type specific within the same type of neurons, with
an exception: FS-LTS in the layer 4.

3. Connectivity within a neuron group is not fully understood, but connections
are massive. For example, (although there are some inconsistency among
known data), one may say that the GJ couplings are far more massive (or,
at least not less) than synaptic connections, although functions of the two

couplings/connections” as well as connectivity are not equal. See, [9], [10]
and [29]. Interplay of those two connection systems should play important
roles in neocortical rhythm genesis.

In view of its dense GJ-couplings, an interneuron system, if it is GJ-
coupled, may better be regarded primarily as a GJ-coupled system. Chemical
connections may play their role on the basis of the intrinsic* rhythms”
induced by GJs.

4. Origins of EPSPs (projected on GJ systems): some evidence exits that they
are fed in a feed forward manner, but details are largely unknown yet, includ-
ing the possibility that they might receive some top down“ signals” from
other cortical areas etc. Dantzker and Callaway. ([5]) reported that both the
FS interneurons and pyramidal cells (PYR) in the layer 1/2 are fed from the
layer 4 in a parallel way. It appears that FSs do not receive (at least strong)
EPSPs from PYRs of the same layer, while PYRs are inhibited by these FSs.
There are other interneuron groups (probably, with no GJ couplings) which
receive excitatory inputs from PYRs. This gives some idea about the general
organization of PYR-FS cell interactions. Whether and how this GJ-coupled
FS interneuron system receives inputs from other cortical/non-cortical areas

“ control” signals is not known.

as“ top down” or

2 Single Cell Behavior of Class I Cells - Some Examples

2.1 Historical Background

Hodgkin pointed out in 1948 that there exist two classes of* neurons” (actually,

“ axons” ). In his paper of 1948 [15] (before he published the famous paper
describing the Hodgkin-Huxley (HH) equations) he wrote that class I“ axons
are capable of repetition over a wide range of frequencies, varied smoothly over
a range of about 5-150 impulses per sec.” , and class II“ axons usually give
a train of impulses of frequency 75-150 /sec which was relatively insensitive to
changes in the strength of the applied current” .

Rogawski commented in his review ([25], 1985) that the difference of the dy-
namic range property, that is, of spike firing characteristic, originates from the
presence of I, -current, a transient slowly inactivating potassium current. I4
is an outward potassium current, differs from the rectifying K+ current I, in
several important aspects, i.e., in its kinetics, in that it activates at more hy-
perpolarized level of membrane potential, and blocked by 4-AP, less sensitive to
TEA (a blocker of Ix). I4 does not exist in squid axons on which the HH model



is based. He stressed that this fact provides the basis of the class I characteristic
of the most of cortical neurons.

It was Connor and his coworkers ([4], 1971; [3], 1977) who studied the* class
I” neurons with I, channel from model-theoretic standpoints. They derived
Hodgkin-Huxley type equations with six variables, two among them coming from
additional activation/inactivation states of the Is-current. Based on the Con-
nor’s work, Rose and Hindmarsh ([26], 1989) reduced the Connor equations into
two-dimensional equations with the spirit to approximate the six variable equa-
tions by a simpler system, and still keeping explicit relations to the original ionic
currents. Similar attempts have been made to the original HH equations by, e.g.,
Rinzel ([23]) and others. Wilson ([33a,b], 1999) presented two-variable equations
similar to the Rose-Hindmarsh equations to qualitatively approximate’ essential
dynamics” of neocortical class I and II neurons.

The argument of Rogawski ([25]) may be controversial in a few aspects. After
his review appeared, it become recognized that there are at least two I 4-currents:
Ias (or, Ip) Iy, with difference in kinetics, activation/inactivation level and
sensitivity to 4-AP. Rogawski’s arguments may have been based on these two
currents in a mixed-up way. Next, the class I property does not necessarily comes
from I4-currents. For example, the Morris-Lecar model, which was designed to

model " the crustacean neurons, with only Ca™ and KT channels included,
may have the class I property. We note, however, that it is generally recognized
that most of cortical neurons are of class I (see, e.g., Cauli, [2]) in the sense of
Hodgkin. But the ionic currents responsible to their class I characteristic appear
to be not fully understood.

The concept of class I/II of neurons may be better understandable in a
mathematical context. Namely, the difference of dynamic behavior between these
two classes is attributed to that of generation mechanism of action potentials:
homoclinic bifurcations (class 1), and subcritical Hopf bifurcations (class II). In
this respect, we note two points. Firstly, the homoclinic bifurcations do not
mean a unique concept if viewed from a dynamical systems standpoint. As we
shall see later, one may observe saddle-node on a limit cycle bifurcations for
the Connor neuron family, and saddle separatriz loop bifurcations typically seen
in the Morris-Lecar neurons in their class I regime. (See, also, Izhikevich [17].)
This taxonomy, identified by the orbits in the phase plane and the bifurcation
diagram, appears subtle, but it will affect the nature of collective behavior when
coupled by GJs. The second note is that the HH model itself is of class IT in most
of biologically appropriate parameter values. It is reasonable to assume that a
Hopf singularity (i.e., bifurcation point) is built-in in the HH equations, and in
fact it can be observed numerically.

Although the concept of* class” of neurons and that of bifurcations as well
do not depend on the number of variables, we proceed our arguments based
primarily on a reduced form of two-variables, where the first variable, say V,
may represent the membrane potential, and the second one, R, the” recovery”
variable representing an activation state of, e.g., some potassium channels in a
generalized sense [23], [26]. With the injected current strength being denoted by



i, the single cell equation may be written as:

dv

TV% :f(VaR)_‘_Z
1
. (1)
TRE :g(V,R)

All the ion channel characteristics are’ condensed” in the nonlinearity of the
functions of f and ¢ here - but only in an approximate sense. The correspondence
between the original ionic channel-based equations of HH-type and (1) is not
one-to-one, but many-to-one. Note also that if one considers to describe a more
general dynamic behavior of single cells like* bursting” ,“ adaptation” , etc.
which are observed in pyramidal cells, or regular spiking interneurons and so on,
one need to add at least another one variable to represent” slow” dynamics.
However, in this lecture we restrict our discussions to equations of the type (1),
and focus on the collective behavior of such cells coupled by GJs, rather than
detailed dynamics of single isolated cells.

2.2 Class I and II Neurons in Two-variable Models

Let us begin with the two-variable model of the form (1). We denote by Ay
and N the nullclines of the V and R equations: Ny, = { (V,R) | f(V,R)+i=0
}and Nz = {(V,R) | g(V,R)=0 }, respectively. Ny, and Nz correspond to the
sets of points in (V,R)-space where il 0 and i 0 hold, respectively.
Within the framework of two-variable reduced model of the form (1), Ny takes
a cubic-like form in most cases. On the other hand, the form of N characterizes
the neuron property. As we shall give particular examples, the class I neurons
are characterized by quadratic-like Nr’s, and the class II neurons by essentially
linear N ’s.

The FitzHugh-Nagumo (FHN) model ([7], [20]) is one of the most known
class IT* neurons” , which has an inclined I-shaped N . Since Ny is essentially
cubic, the point of intersections of Ny, and Ny shifts according to the level of
the injected current i, taken as a bifurcation parameter. For class II neurons, the
intersection of the two nullclines is (in most cases) unique, and the nature of
the intersection changes from a stable node (two real negative eigenvalues) to
an unstable spiral. (i.e., a pair of complex conjugate eigenvalues with positive
real parts). Between those two states, there appears a pair of pure imaginary
eigenvalues which correspond to a Hopf bifurcation point.

For the convenience of later discussions, we introduce a few models of class
I and IT in explicit forms in the following.



Example 1. Morris-Lecar model 0 Regime I and II

Although the Morris-Lecar equation was firstly introduced to model crustacean
neurons with C'a™* and K channels, it has frequently been used as a theoretical
model. (Rinzel-Ermentrout [24], Izhikevich [17].) This ML model can be both of
class I and II depending on its parameters.

% — —geame(V)(V = 1) + g R(V = Vie) + g (V — Vi) +i
W R (V) ~ BY/7(V)
where
(Mmoo (V) = [1 + tanh{(V — V,)/V3}]/2
Roo (V) =1+ tanh{(V — V.)/Va}]/2 (2)
Tr(V) =1/ cosh{(V —V.)/(2V4)}
with _
V, = —0.01,Vy = 0.15, g = 1.0, gxc = 2.0
|19 = 0.5,VK = —0.7, VL = —0.5,q =1.15

Fig. 1: Two regimes of the Morris-Lecar model =~ Two nullclines are drawn in the phase
( 'V, R )-space. (Left) Class I regime: V., = 0.1, V3 = 0.145, ¢ = 1/3; i = 0.083 (Right)
Class II regime: V. = 0, V; = 0.3, q=0.2; + = 0.2;0.3;0.4

Fig.2 shows the orbit in the phase space in the case of Class I regime at the
saddle separatrix loop bifurcation where the unstable and stable manifolds make
a closed loop, i.e., a homoclinic orbit. As the current-level i increases, this loop
splits from the saddle. Since the new born loops are close enough to the saddle,
their period is very large just after they split from the saddle. This is the class
I formation mechanism of spikes in the Morris-Lecar I case. Although this may
provide an example of class I characteristic in Hodgkin’s sense, those* spikes”
are actually small membrane potential oscillations in a depolarized state.
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Fig. 2: Phase diagram of the Morris-Lecar model in Class I regime. The diagrams
illustrate the birth of a saddle separatriz loop bifurcation. The left diagram shows the
orbits when the current 7 is below the bifurcation point. As i increases, the unstable
and the stable manifolds from the saddle (the cross mark) form a closed loop, i.e., a
homoclinic orbit (center). Then, the loop splits from the saddle and forms a limit cycle
(right ).
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Fig. 3: Bifurcation diagram of the Morris-Lecar model in Class I regime. At the critical
current value i=:*, there appears a homoclinic orbit. Filled circles indicate bifurcated
stable branch of“ spikes” , while the open circles are an unstable branch of spikes.

Example 2. A model of Connor-Rose-Hindmarsh (CRH) family

The Rose and Hindmarsh model based on the Connor equations is also written
in the form of (1), where Nz takes a quadratic-like U-shape. Let us consider (1)
with the nonlinearity in the form of (3), following the formulation of Rinzel [23]
and Wilson (1999, [33a]):



{ fV,R) = —meo(V)(V = Vo) — g R(V = Vk) (3)
9(V,R) = =R+ R (V)

Nakano et al. ([21], 2003) considered a class I model of the form (1), (3), where

Moo (V) =5.36 + 17.04V + 16.9V?, Ro (V) = 1.29V 4 0.53 + 3.3(V 4 0.18)%, gx = 11.0 (4)
VNa =0.48, Vg = —0.95, 7y = 1.0, 7 = 2.4

which is a modified version of Wilson’s Class I model (1999, [33a]). Egs.(1), (3),
(4) have an unstable spiral instead of the unstable node in the Wilson model.
See, Fig.4.
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Fig. 4: Phase diagram of the Connor-Rose-Hindmarsh model. As the injected current
1 increases from the rest state, the nullclines become to have three intersections, i.e.,
a stable node (an equilibrium), a saddle and an unstable spiral. Then, the stable node
and the saddle collide at a critical current value, where a homoclinic orbit appears from
the saddle-node. See, also Fig.5. This is the seed of action potentials with the period
= 0o. Note that after the current i traverses the saddle-node bifurcation point, there
appears a“ narrow channel” between the two nullclines.



The number of intersections of Ay, and Nx varies from one to three, and
then again back to one for such neurons when the current level i increases from
the rest state. There appears a saddle-node bifurcation point at the critical level
of i where the saddle and the node collide as is shown in Fig. 4 when i =
0.07. The salient property of the reduced Connor family is that as the injected
current ¢ traverses the saddle-node bifurcation point, there appears a narrow
channel between Ny and N3i. See, the top picture of Fig.4, at i = 0.18. Rose
and Hindmarsh [26] emphasized that this is a consequence of the presence of
I4-current. Fig.5 illustrates how a saddle-node bifurcation yield a homoclinic
orbit in the phase plane.
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Fig. 5: Formation of limit cycles at a saddle-node bifurcation point for the Connor-
Rose-Hindmarsh neuron. (left) There are two heteroclinic orbits from the saddle to the
node (left), one of which becomes a large homoclinic orbit when the saddle and the
node collide (center). Then, as the saddle-node disappears, the remaining closed loop
turns into a limit cycle (right).

For the purpose of comparison, Nakano et al. ([21]) also considered a class IT
neuron model by Wilson (1999, [33a]) with a linear nullcline Ng.

Meo(V) = 17.81 + 47.71V + 32.63V2,
Roo(V) = 1.35V + 1.03, )
gx = 26.0,Vxa = 0.55,

Vi =-092,7y =08,75 =19

Fig.6 shows instantaneous spike rates as functions of injected current strengths
for the class I (Egs. (1), (3) and (4)) and class II (Eq. (5)) models. The lower
box indicates the class I firings as the current increases.



Class IT I —
=550
[ - a
- -
& =3
= 150
B
& 100
B /
50 /
i} 40
o as a1 a1s az azs a2

infected curront vel i (nd)

i=0075 =010 i=0.20

Fig. 6: Spike frequency characteristics of class I and II neurons (top) and the class I
spike generation of a class I model due to Egs. (1), (3) and (4) (bottom).

3 Class I vs. Class II Neurons under GJ Couplings
- a Zoology

In this section we give a zoology of spatio-temporal dynamics emerged by GJ-
coupled system of neurons of class I and II. The aim here is to understand
the variety of potential dynamics intrinsic to class I and II neuronal systems
that may emerge when coupled by GJs. With this in mind, we examine the GJ-
coupled dynamics under a simple situation: under uniform GJ-couplings without
synaptic connections, i.e., with no internal irregularity of the network structure
and with no external fluctuation of injected currents. This may help us to know
the nature of intrinsic coupled dynamics: the difference between cells of class I
and II, between two prototypes of the class I neurons etc..

For instance, Nakano et al. [21] have shown that the modified Connor-Rose-
Hindmarsh system, i.e., Egs. (1), (3) and (4) with nearest neighbor couplings
exhibits extensive spatio-temporal chaos under a spatially and temporally con-
stant injected current which puts the system near the saddle-node critical level.
As is shown in the previous section (Fig.6), those neurons show only repetitive
firings when isolated. Han et al. [12a,b] reported that the Morris-Lecar model in
the class I regime exhibits dephasing of oscillations under all-to-all couplings.

In the actual cortex GJ couplings are obviously not uniform, and the spatial
connectivity is not fully understood. There are also chemical synapses among
interneurons which may exert inhibitory effects on the network dynamics. Po-
tential and emergent dynamics intrinsic to GJ-coupled systems we introduce



here may provide a basis for the study of interplay of the GJ-induced dynam-
ics with those synaptic interactions, and interneuron-PYR neuron interactions.
Note that the FS-PYR structural configuration mentioned in Sect. 2.1 (Dantzker
and Callaway [5]) may justify our strategy to study as a first step the intrinsic
dynamics of interneurons.

We first summarize the results of numerical works done by Nakano et al.[21]
in the following. Then, we discuss the collective dynamics of ML systems.

3.1 Gap Junction Couplings

Gap junctions are assumed to take the following form according to Schweighofer
et al. [27].

For j =1,...,N;
dv;
Tv— = FVi By) + 1 +
. (6)
TRd—t] = g(‘/J:RJ)

where I;’s stand for injected background currents (which are assumed to be
constant in time and space in this simulation), while J;’s represent the currents
induced by gap junction couplings:

Jj =cc Z(ani —V;),(nb; € coupled neigbor cells) (7)
nb;

_¢ =+ gapjunction coupling 2.,

one-compartment two-variable
0 reduced nenron model

injected current spatially uniform,
l, and temporally constant

Fig. 7: The configurartion of GJ-couplings considered. Neurons are arranged as a two
(or, one) dimensional array. GJ-couplings are either 4 or 8 (or, 2) nearest neighbor-
couplings. Coupling conductances gs;’s are assumed to be constant.

Here, gs; is a coupling constant, which is assumed to be identical for all con-
nections in the present simulation. When the system is two (one)-dimensionally
lined up with four (two) neighbors coupling, this is the nearest neighboring cou-
pling equivalent to a linear discrete diffusion process. For cells at the boundaries,



the couplings are only with the inner cells according to the definition by Eq.7.
(Usually, this is referred to as the Neumann boundary condition.)

A note about the coupling term J;’s. Scheweighofer et al. ([27]) formulated
the GJ-coupling term with a mild nonlinearity. However, since we found no
qualitative difference at least from collective dynamics standpoints, we simply
assume the linear discrete GJ effects (7) throughout this lecture.

3.2 Chaos in Two Class I Systems

a. Nakano et al. model - a member of the Connor-Rose-Hindmarsh family

The model defined by Egs. (1), (3) and (4) of class I neuron of the Connor-Rose-
Hindmarsh family exhibits extensive spatio-temporal chaos with, even spatially
and temporally constant, injected currents near or over the saddle-node critical
point. In general, this GJ-coupled classl system has several typical dynami-
cal patterns: synchronous repetitive firings, periodic metachronal' firings, and
spatio-temporal chaos as well as synchronous resting state, depending on the
GJ conductance and the background current level. Note that chaos appears very
robustly with regard to the background current strength, the strength of GJ
conductance and even the coupling structure. See, Figs.8, 9 and 12 below. The
maximal Lyapunov exponents are positive in such cases. Individual cells exhibit
extensive fluctuations both in phase and magnitude.

Connor-Rose-Hindmarsh Model
Nakano ef al , 2003

1rruaod auniquiati

Fig. 8: Chaotic dynamics in the phase plane and the membrane potentials of three
representative neurons among 10x10 GJ-coupled system of Egs. (1), (3) and (4).

L' A metachronal wave is a wave produced by successive phase shifts of neighboring
neurons’ activity like the movement of centipedes or cilium and flagella.



Fig. 9: The snapshots of GJ-coupled class I neuron systems of Egs. (1), (3) and (4).

b, Morris-Lecar Model in Class I Regime

The Morris-Lecar model has a parameter range of class I regime. Han et al.
([12a,b]) have observed dephasing of oscillations under all-to-all couplings. In
our nearest neighbor couplings, we can also observe alternation of phases of
small amplitude oscillations at a depolarized potential level. Also the orbit inter-
mittently itinerates around the saddle equilibrium. Although a snapshot of the
spatial pattern appears to be similar to the Connor family, the dynamics in the
phase plane of individual cells seems very different in that the orbit oscillates
around the limit cycle in a“ depolarized” state and never turns back to the
rest state. See, Fig.10.

s 4 mvioo

%. L

5 '
3 Jﬂ\j\vf‘\}'v\vf‘mf\fumJ\ﬁmmmvwwﬁ
g

=3

E o 10 E‘D‘ 30 40 50 ﬁdﬂ. 0 a0 a0 100 >

time (ms)

Morris-Lecar model
Class I

802

i=0.07296

Class I

Fig. 10: Behavior of GJ-coupled Morris-Lecar model in regime I. The saddle separatrix
bifurcation occurs approximately at ¢ = 0.07293. The class II regime, on the other
hand, has plane traveling waves (right).



3.3 Gap Junction-coupled Class I and Class II Dynamics

We show some typical spatio-temporal patterns exhibited by class I and II neu-
rons. The first row of Fig.11 below shows the chaotic dynamics of 80x80, 4-
neighbor coupled Class I neurons. The next two rows indicate both class II
model behaviors with the same configuration as the above case. Since Class II
equations originate as models of action potential propagations in axons, it is
natural that they exhibit traveling waves or spiral waves when they are coupled
by GJs in a one- or two dimensional array. This appears in the third row, while
they exhibit also complicated spatially non-uniform periodic patterns as in the
second row. Morris-Lecar equations of regime II show plane traveling waves.
(See, Fig 10.)

Fig. 11: Typical spatio-temporal patterns of Class I neurons defined by Egs. (1), (3)
and (4) (top), and class II neurons Eqs. (1), (3) and (5) (center and bottom).

3.4 Spatial Scales of Chaotic Patterns

Fig.12 (a), (b) show snapshots of membrane potential contours made by 80x80
coupled Connor family neurons Egs.(1), (3) and (4), with increasing gap junction
conductance gg;. This shows how robustly spatio-temporal chaos appears; it
appears in a wide range of parameters near the saddle-node bifurcation points,
and even for far larger injection currents if g, is smaller. Fig.12 (a), (b) are the
cases for 4- and 8-nearest neighbor couplings. Also, the size of spatial patterns
become larger when the coupling g., is set stronger.
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Fig. 12: Snapshots of contours of membrane potentials of 80x80 class I* neurons. (a)
(top) 4nearest neighbor couplings (b) (bottom) 8-nearest neighbor couplings The gap
junction strength gg; is, from left to right, 0.5, 1.5 and 3.

4 Class I* - Essential Nonlinearity

We have introduced the basic possibility that there is some class of neurons in
the Connor-Rose-Hindmarsh family, which emerges spatio-temporal chaos when
they are coupled by GJs under a certain level of background currents. The aim
of this section is to consider the question: what is the essence of the nonlinearity
of the model which may induce chaotic behavior when coupled by GJs?

4.1 Class I*

We define a neuron class, say I*, in an abstract setting, which includes (a part of)
the class I neurons of Connor type. Let I* denote a subclass of class I neurons,
in which there is an open interval 7 = (i*, i**) of injected currents such that
for all 4+ O T , it holds that

1. there is a family of closed orbits O(i) with periods IT (i) such that
lim 17 (i) = +o0
1—r1¥
2. a narrow channel appears between the two nullclines for i > 7*, and
3. an unstable spiral fixed point exists inside the orbit O(i).

The second condition implicitly assumes that the channel has a finite" length”
and the“ width” of the channel changes proportionally to Ai = i-i*, i.e.,
the excess of current over the critical current i*. We note that during when
an orbit is passing inside the“ narrow” channel, the“ neuron” undergoes



the repolarizing process from the hyperpolarizing state. Since the orbit is close
enough to the two nullclines during that period, the recovery proceeds very
slowly with the speed proportional to A:.?2 The period of an action potential
discharge drastically affected by fluctuations of the current near i*, and lengthens
or shortens according to the magnitude of Aj, i.e., the width of the channel.

The last condition claims that the closed orbit O(3) is filled in by infinitely
many spiral orbits. Note that we assume the class I property in the sense of
Hodgkin as stated in the first condition, but not necessarily a homoclinic bifur-
cation, although the latter is a natural situation in most neuron models.

We hypothesize that class I* neurons, when coupled by gap junctions, exhibit
extensive spatio-temporal chaos in some parameter regions® * as its emergent
property of coupled systems.

4.2 Models with Class I* Essential Nonlinearity

It is not difficult to construct simple models of class I*. For instance, the
readers can easily see that a model with a cubic Ny and a quadratic Az can be
in the class I* with appropriately chosen parameters. The first example is our
one (u-)parameter family.

p -model:
dx .
E = -y -+ f(:L’) +1
(8)
d
d_li =-y+g(x)

with

fa) = (e = 3), g(x) = pa?

The p -family possesses necessary and sufficient features to express class I*
neurons, and hence the essential minimum. This minimum model for the Con-
nor equations may have a similar position which the FitzHugh-Nagumo model
has to the Hodgkin-Huxley equations in a mathematical sense, but not in an
electrical sense. A note should be added with regard to the Hindmarsh and Rose
model ([14b], 1984) which has one slow variable and two-variables, introduced
to simulate bursts in hippocampal cells. As Kaas and Petersen ([18], 1987) and

2 One might think that even for a system without a narrow channel, orbits may proceed
very slowly near the' ruin” of a saddle-node. In fact, this makes the system to behave
as class I in the sense of Hodgkin. However, the claim for finite length of the channel
is the key property for class I* property.

8 There are neurons of class I, but not belong to class I*. Also, some class I neurons
in Connor family may not be of class I*.

4 We should also choose an appropriate set of the time constants 7 and Tx.



Hansel and Sompolinsky (1992, [13]) worked out, a single neuron of the three-
variable Hidmarsh-Rose model exhibits a chaotic behavior for a limited interval
of injected current. Interestingly, if the third slow variable is omitted, the re-
maining equations for the two-variables are within the class I* family, and have
essentially the same nonlinearity as the pu-family. Thus, the essence of the chaos
genesis for the three-variable Hindmarsh-Rose model appears to be in its class IT*
property, where slow oscillations serve as a midwife. For the two-variable Connor
family the current inflow /outflow from neighboring cells through GJs plays the
role of unveiling the intrinsic chaos.

Piecewise Linear Class I* Model

We can define a class I* piecewise linear model, with a saw teeth shaped,
cubic-like Ny and quadratic-like Nz . This may provide a theoretical model
that possesses the essence of the class I* property. See, Fig.13.> This simple
model yields spatio-temporal chaos typically observed in class I* family. See,
Fig.14.

—¢rx — (P + )0, & < —1
f(@) = doz, |z |< €
—OrT + (QSU + ¢R)£7 x> L

_ -tz -a)+ B, z<a
9(z) = { +Yr(z—a)+ 8, z=>a 9)
with

by = 1.42,¢, = 1,6, =1.42,0 = 1.1;

Y, =14,¢.=32a=—-084=-16

Fig.13: This model is obtained just by
replacing the quadratic and cubic func-
tions in p-model by piecewise linear func-
tions. By modifying parameters, one can
obtain piecewise linear versions of class
I*. Moreover, one can metamorphose the

e model continuously from class I*, class
I without narrow channel, Morris-Lecar
and even to class II neurons. The thick
solid lines correspond to a class I* non-
linearity (Eq.9), which yields a spatio-
temporal chaos typical in class I* family.
See, Fig. 14.

5 The piecewise linear model metamorphoses continuously to models of a variety of
other classes, e.g., piecewise linear versions of class I*, class I without narrow channel,
Morris-Lecar and even class II neurons by changing a few parameters in the model.



5 Itinerant Dynamics in Class I* GJ-coupled Systems

We have discussed some aspects of the genesis of spatio-temporal chaos which may
be intrinsic to class I* neuron models. In this section, we turn to the question of the
nature of such global dynamics. One of the authors (I.T.) has argued that memory
dynamics in the brain could be characterized as chaotic itinerancy, typically observed
in high-dimensional dynamical systems. Chaotic itinerancy is addressed as a transitory
and sometimes“ mnonstationary” dynamics. The dynamical orbits once approach one
of* quasi-attractors” (or,“ attractor ruins” ) and stay for sometime with a certain
distribution, and escape there and approach to other ruins. This transitory dynamics
continues without external perturbations. Here the quasi-attractors may be possible
to define in terms of the concept introduced by Milnor ([19]). Chaotic itinerancy is
characterized by the presence of many near-zero Lyapunov exponents, slow decay of
correlations/ (mutual) information, history (path)-dependent transition, no ergodicity,
nonconvergence or an extremely slow convergence of near-zero and/or even the largest
Lyapunov exponents in some case. See, Tsuda ([30]-[32]) for more details.

Fig14: Contour map of membrane potentials of 20 neurons of class I* piecewise linear
neurons coupled with the two neighbors by gap junctions with gg; = 0.2. The vertical
and horizontal directions indicate respectively the neuron positions, and the time (0
- 250 msec). Each neuron receives a constant injected current without any external
fluctuations. No structural irregularity exists in this model. (From Fujii and Tsuda [8],
2003.).

Figure 14 shows a contour map of the time series of membrane potentials observed
in the GJ-coupled piecewise linear class I* neurons. It appears that no classical attrac-
tors exist in the system, and we observe metachronal waves which chaotically repeat
creations and annihilations. If a metachronal wave with a short time lag could be
viewed as a synchronized state, Figure 14 and other examples, including the u-family,
of our numerical results may indicate the presence of transient synchrony - chaotic
alteration of synchronized and desynchronized states; the alternation is chaotic both



in its timing and spatio-temporal patterns.’

Based on numerical studies, we propose that these transitions can be described as
chaotic itinerancy. Further studies on mathematical mechanism of the chaotic transi-
tions are necessary for understanding the global itinerant dynamics observed in class
I* family.

6 Concluding Remarks

We have demonstrated in this lecture a theoretical possibility that gap junction-coupled
neuron systems may emerge spatio-temporal chaos, if they possess a certain kind of
nonlinearity, which is basically induced from ionic channel properties of the cell. We
have shown a zoology of spatio-temporal patterns which neurons of class I* and II
could exhibit as their intrinsic dynamics.

We then characterized the neuron property as class I* which may lead neurons to
emerge spatio-temporal chaos when coupled by GJs. This classification is based on
models with two-variables. The essential nonlinearity of class I* is summarized as: the
presence of narrow channel and a spiral fixed point, together with the presence of a
homoclinic orbit due to a saddle-node bifurcation in a generalized sense. We have given
two simple theoretical models of class I* nonlinearity.

Through numerical studies, we hypothesize that those spatio-temporal chaos can be
described as chaotic itinerancy itinerant among quasi-attractors (or, attractor ruins),
which are characterized as synchronous states of groups of neurons. The global dynam-
ics are thus expressed as transitory dynamics between synchronous and desynchronous
states. In a word, synchrony within chaos should be the direction for further inves-
tigation. Mathematical mechanisms of emergent chaos in high-dimensional systems
are, however, far from fully understood, the results here are mostly through numeri-
cal studies, and many statements presented here are only in a form of hypothesis. To
understand the mathematical mechanism of the transitory dynamics in class T* GJ-
systems we need further studies.

Physiological meaning of the principal condition for class I* nonlinearity, i.e, the
existence of narrow channel is not trivial, though Rose and Hindmarsh ([26]) empha-
sized that it is a consequence of I4-currents based on the Connor formulations ([4]).
See, also the arguments of Rogawski ([25]). In this respect, since so many distinct
interneurons, FS, LTS and MB cells, are involved in GJ couplings in the neocortex,
physiological study about ionic channel properties, as well as efforts in mathematical
modelings should be crucial.

We proposed ([32]) the inhibitory chaotic field hypothesis, suggesting the relation
of the hypothetical transitory dynamics of interneuron systems to the observed neo-
cortical LFP (local field potential) fluctuations. This says that the origin of the LFP
fluctuations and stimulus-dependent transient synchrony, firstly observed and claimed
by Gray [11] as the indicator of feature binding, is the itinerant chaos exhibited in gap
junction-coupled interneuron systems consisting of class I* neurons. It should be noted,
however, that chaotic fluctuations of inhibitory interneurons in cortical layers, are not

6 In our numerical data we generally observe the dimension gap, i.e., the Lyapunov
dimension (an approximation of the Haussdorf dimension of a chaotic attractor) is
bigger than the topological dimension by more than one. This dimension gap stems
from a large number of negative Lyapunov exponents with a small absolute value.
This brings about distributed attractors in phase space.



directly reflected in LFP. It should be a result of interplay of GJ-coupled neuron sys-
tems and pyramidal systems. About further discussions on possible cognitive functions
of itinerant interneuron dynamics, please refer to our another paper (Tsuda and Fujii
0320, this issue).
Although many questions remain open, we hope that our study may provide a new
scope for the study of neocortical dynamics and its cognitive role.

Acknowledgments

The authors would like to express their special thanks to the other members of the
Dynamical Brain Group { Gang of Five” ), Prof. M. Tsukada (Tamagawa University),
Prof. K. Aihara (the University of Tokyo) and Prof. S. Nara (Okayama University).
They also thank to H. Yokoyama, M. Nakano, M. Ibuki (Kyoto Sangyo University)
for the calculations of dynamics of various models and bifurcation structures. The first
author (H.F.) was supported by the Advanced and Innovational Research Program in
Life Sciences, while the second author (I.T.) was partially supported by Grant-in-Aid
no. 12210001 on priority areas (C), Advanced Brain Science Project, both from Ministry
of Education, Culture, Sports, Science and Technology, the Japanese Government.

References

[1] M. Blatow et al., A Novel Network of Multipolar Bursting Interneurons gener-
ates Threta Frequency Oscillations in Neocortex, Neuron 38(2003), 805-817.

[2] Cauli, B. et al., Molecular and physiological diversity of cortical nonpyramidal
cells, J. Neurosci.(1997), 3894-3906.

[3] Connor, J.A. et al., Neural repetitive firing: modifications of the Hodgkin-Huxley
axon suggested by experimental results from crustacean axons, Biophys.J.18
(1977), 81-102.

[4a] Connor, J.A. and Stevens, C.F., Inward and delayed outward membrane cur-
rents in isolated neural somata under volatage clamp J. Physiol. 213(1971), 1-19.
[4b] Connor, J.A. and Stevens C.F., Volatge clamp studies of a transient outward
membrane current in gastropod neural somata,J. Physiol. 213(1971), 21-30.

[4c] Connor, J.A. and Stevens C.F., Prediction of repetitive firing behaviour from
volatage clamp data on an isolated neurone soma,J. Physiol. 213(1971), 31-53.

[5] Dantzker, E.L. and Callaway, E.M., Laminar sources of synaptic input to O
cortical inhibitory interneurons and pyramidal neurons, Nature Neuroscience 3
(2000), 701-707.

[6] Ermentrout, B.R., Type I membranes, phase resetting curves, and synchrony,
Neural Computation 8, (1996), 979-1001.

[7a] FitzHugh, R., Impulses and physiological states in models of nerve membrane,
Biophy. J. 1, 445 (1961).

[7b] FitzHugh, R., Mathematical Models of Excitation and Propagation in Nerve,
In Biological Engineering, H.P. Schwan (ed.) (1969), McGraw-Hill, New York, 1-
85.

[8] Fujii, H. and Tsuda, I. Neocortical gap junction-coupled interneuron systems
may induce chaotic behavior itinerant among quasi-attractors exhibiting transient



synchrony, to appear in Neurocomputing.

[9] Galarreta M. and. Hestrin, S.., A network of fast-spiking cells in the neocortex
connected by electrical synapses. Nature 402 (1999), 72-75.

[10] Gibson J.R. et al,, Two networks of electrically coupled inhibitory neurons in
neocortex. Nature 402 (1999), 75-79.

[11] Gray, C., Engel, A. K., Koenig, P. and Singer, W., Synchronization of oscilla-
tory neuronal responses in cat striate cortex: Temporal properties, Visual Neuro-
science, 8 (1992) 337-347.

[12a] Han, S.K., Kurrer, C. and Kuramoto, Y., Diffusive interaction leading to
dephasing of coupled neural oscillators, Intern. J. Bifurc. & Chaos, Vol. 7, No. 4
(1997), 869-876.

[12b] Han, S.K., Kurrer, C. and Kuramoto, Y.,, Dephasing and bursting in coupled
neural oscillators, Phys. Rev. Lett. 75 (1995), 3190-3193.

[13] Hansel, D. and Sompolinsky, H., (1992), Synchronization and computataion
in achaotic neural network, Phys. Rev Lett. 68, 718-721.

[14a] Hindmarsh, J.L. and Rose, R.M.., A model of the nerve impulse using two
first-order differential equations, Nature 296 (1982), 162- 164.

[14b] Hindmarsh, J. L. and Rose, R. M., A model of neuronal bursting using three
coupled first order differential equations, Proceedings of Royal Soceity of London,
B221 (1984) 87-102.

[15] Hodgkin, A.L., The local electric changes associated with repetitive action in
a non-medullated axon, J. Physiology (1948), 107, 165-181.

[16] Hodgkin, A.L. and Huxley, A.F., A quantitative description of membrane cur-
rent an application to conduction and excitation in nerve, J. of Physiology 117
(1954), 500-544.

[17] Izhikevich, E.M., Neural excitability, spiking and bursting, Int. J. Bifurcation
and Chaos, 10 (2000), 1171-1266.

[18] Kaas-Petersen, C., Bifurcations in the Rose-Hindmarsh model and the Chay
model, Chaos in Biological Systems, edited by H. Degn, A.V. Holden and L.F.
Olsen, plenum, New York, 183-190. 1987.

[19] Milnor, J.,On the concept of attractor, Communications in Mathematical
Physics, 99 (1985) 177-195.

[20] Nagumo, J., Arimoto, J. & Yoshizawa, S., An active pulse transmission line
simulating a nerve axon, Proc. of IRE 50, 2061-2070 (1962).

[21] Nakano, M., Yokoyama, H. and Fujii, H., Spatio-temporal Chaos in Gap
Junction-Coupled Class I Neurons Exhibiting Saddle-Node Bifurcations O (in
Japanese, Acta Humanistica et Scientifica Universitatis Sangio Kyotiensis - Natural
Science Series, Vol. 32 (2003)); M. Nakano, Spatio-temporal chaos in gap-junction
coupled systems of model neurons with saddle-node bifurcations (in Japanese),
Master Dissertation, Graduate School of Engineering, Kyoto Sangyo University,
January 15, 2002.

[22] Raffone, A. and van Leeuwen, C., Dynamic synchronization and chaos in an
associative neural network with multiple active memories, Chaos 13 (2003), - Focus
issue on” Chaotic Itinerancy” eds. K. Kaneko and I. Tsuda, 1090-1104.

[23] Rinzel. J., Excitation dynamics: insights from simplified membrane models,
Fed. Proc. 44 (1985), 2944-2946.

[24] Rinzel, J. and Ermentrout, G.B., Analysis of neural excitability and oscilla-
tion. In method in Neuronal Modeling: from Synapses to Networks, C. Koch and
I. Segev, Eds., Cambridge, MA, MIT Press. (1989), 135-169.

[25] Rogawski. M.A., The A-current: how ubiquitous a feature of excitable cells is



it? TINS 8 (1985), 214-219.

[26] Rose, R.M. and Hindmarsh, J.L.. The assembly of ionic currents in a thalamic
neuron I. The three-dimensional model. Proc. R. Soc. Lond. B 237 (1989), 267-288.
[27] Schweighofer, N. Doya, K. and Kawato, M. Electrophysiological Properties of
Inferior Olive Neurons: A Compartment model, J. Neurophysiol. 82 (1999), 804-
817.

[28] Sloper, J.J., Gap junctions between dendrites in the primate neocortex, Brain
Res. 44 (1972), 641-646.

[29] Tamas, G. et al., Proximally targeted GABAergic synapses and gap junctions
synchronize cortical interneurons. Neuroscience. 3 (2000), 366-371.

[30] Tsuda, I., Chaotic itinerancy as a dynamical basis of Hermeneutiocs of brain
and mind, World Futures 32 (1991), 167-185.

[31] Tsuda, I., Toward an interpretation of dynamic neural activity in terms of
chaotic dynamical systems. Behavioral and Brain Sciences 24 (2001), 793-847.
[32] Tsuda, I. and Fujii, H., Complex Dynamical Systems’ Approach Toward an
Interpretation of Dynamic Brain Activity, Part I: Chaotic itinerancy can afford
a mathematical basis of information processing in cortical transitory and nonsta-
tionary dynamics, this volume.

[33] Wilson, H. R., Simplified dynamics of human and mammalian neocortical neu-
rons, J. Theor. Biol. (1999a), 200, 375-388.

[34] Wilson, H.R., Spikes, Decisions & Actions, Oxford University Press, (1999b).



