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Patients with dementia with Lewy bodies (DLB) frequently experience visual hallucination (VH), which
has been aptly described as people seeing things that are not there. The distinctive character of VH in
DLB necessitates a new theory of visual cognition. We have conducted a series of studies with the aim to
understand the mechanism of this dysfunction of the cognitive system. We have proposed that if we view
the disease from the internal mechanism of neurocognitive processes, and if also take into consideration
recent experimental data on conduction abnormality, at least some of the symptoms can be understood
within the framework of network (or disconnection) syndromes.

This paper describes the problem from a computational aspect and tries to determine whether
conduction disturbances in a computational model can in fact produce a “computational” hallucination

under appropriate assumptions.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Patients with dementia with Lewy bodies (DLB) frequently ex-
perience visual hallucination (VH), which Collerton, Perry, and
McKeith (2005) aptly described as the phenomenon where “people
see things that are not there”.

The distinctive character of VH in DLB appears at first glance
to challenge the conventional theory of visual cognition. In DLB,
hallucinatory images are mostly single entities, for example, an in-
tegrated image of a human or animal, and appear at the center of
attention. The persistence of VH images is typically on the order of
minutes but can sometimes be seconds or even hours, depending
on the patient (Mosimann et al., 2006). What is most distinctive is
that the image appears on a normal background scene, and at only
the center of attention, a non-existing image is additionally super-
imposed. Also, the figure is consistent with the context and setting
in which it appears (Collerton et al., 2005; McKeith et al., 2005;
Perry & Perry, 1995). Hence, some cognitive functions appear in-
tact, whereas others are hallucinatory.
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We have conducted a series of studies aiming to understand
the core mechanism of this dysfunction of the cognitive system,
and to make experimentally testable predictions that may lead to
a plausible etiology.

We have proposed that if we view the disease from the
internal mechanism of neurocognitive processes, and if we also
take into consideration recent experimental data on conduction
abnormality (Catani & de Schotten, 2012; Catani & ffytche, 2005),
at least some of the symptoms can be understood within the
framework of network (or disconnection) syndromes, that is,
hodotopical dysfunctions! (Catani & ffytche, 2005). VH in DLB
may have homology with some of other cognitive dysfunctions,
including the conduction aphasia reported by Geshwind (1965),
Rykhlevskaia, Uddin, Kondos, and Menon (2009); for a much earlier
account, see Lichtheim (1885).

In VH of DLB, the prefrontal cortex (PFC) might be disturbed,
but without intrinsic pathology; hence, one or more of the fasci-
culi connecting the PFC with the visual or temporal areas might

1 Greek, “topos” means place, while “hodos” means road or path. Thus, by

topological and hodological dysfunction we refer, respectively, to dysfunction of
the cortex itself and dysfunction related to connecting pathways, respectively. A
hodotopic view thus refers to a hodological-topological point of view (ffytche,
2008), and we use the term network syndromes for such dysfunctions.
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be damaged but other connections could remain intact (Goedert,
Spillantini, Del Tredici, & Braak, 2013).

Recent imaging technology provides a means of experimentally
studying the possible deficits (Catani & de Schotten, 2012) of con-
necting fasciculi. Further discussion of the pathophysiology of VH
associated with DLB will be a focus of future studies.

The present study describes the problem of VH in DLB from a
computational aspect, and seeks to determine whether conduction
disturbances in our computational model can produce a “compu-
tational” hallucination under appropriate assumptions. The main
part of this proposal was presented in Fujii, Tsukada, Tsuda, and
Aihara (2014).

2. Orbitofrontal cortex triggers top-down facilitation

The content and character of VH in DLB primarily reflect the
nature of visual processing (Collerton et al., 2005), and VH is a
consequence of dysfunction of the normal visual cognitive system.
Thus, understanding the brain mechanisms underlying normal
object recognition is of crucial importance.

2.1. Standpoints

Understanding the neural mechanisms that underlie object
recognition in both normal and dysfunctional states naturally leads
us to the study of the PFC, in particular the ventrolateral PFC
(VLPFC) and the orbitofrontal cortex (OFC), and the inferior tem-
poral cortex (IT). In this regard the following statements provide
the essence of our arguments.

First, our argument regarding the visual system is, in contrast
to the previous conventional bottom-up view that relies on hierar-
chical processing, based on a top-down view of object recognitions
(Bar, 2003, 2004, 2006; Fenske, Aminoff, Gronau, & Bar, 2006; Kver-
aga, Ghuman, & Bar, 2007). In fact, the central notion here is the
top-down facilitation of the IT activity triggered by the PFC (Coller-
ton, Dudley, & Mosimann, 2012). The facilitating signals to the IT
are in the form of “bias” so that the IT can reactivate a detailed ob-
ject representation. In this paper, we call this top-down signal an
“index” so that it can encompass a range of top-down processes.
However, the nature of this top-down “index” is currently a sub-
ject of debate.

In fact, the biasing signal that the PFC provides the IT may be
an “initial guess” prediction about the identity of the object at the
center of attention, as proposed by Bar and colleagues (Bar, 2003,
2004; Chaumon, Kveraga, Barrett, & Bar, 2013; Fenske et al., 2006;
Kveraga et al., 2007). We have presumed this conceptualization
in our computational implementation (Tsukada, Fujii, Tsuda, &
Aihara, 2014).

Another conceptualization is that the nature of the index is
prior expectancy for facilitating perception. In other words, the PFC
provides the IT a set of expectations about possible interpretations
of the input (Summerfield & Egner, 2009).

2.2. Integration of sensory information with memory

The PFC-VLPFC/OFC facilitates visual recognition by sending the
IT top-down predictions about the identity of visual objects. To
make a prediction the PFC needs to integrate incoming sensory in-
formation with memory. The part of the PFC that serves as the mem-
ory system for object-related semantic knowledge (OSK) is called
the OSK network in the following.

In addition to information from the OSK network, the PFC it-
self relies on information from the visual stimulus at the center of
attention (Chaumon et al., 2013) before an object is actually recog-
nized. The information that the PFC receives in object recognition
is rapidly extracted low-level information that has low spatial fre-
quency, where associative information allows the formation of a
predictive ‘initial guess’ about what objects are likely in the scene
(Chaumon et al., 2013).

This rapid signal had once been supposed to be transmitted via
a magnocellular pathway (Bar, 2003), but is now reasonably as-
sumed to be transmitted via the inferior fronto-occipital fasciculus
(iFOF), which can carry a wide range of information (Thiebaut de
Schotten, Urbanski, Valabregue, Bayle, & Volle, 2012).

Such visual information (Bar, 2003) alone, however, cannot
allow a unique guess on the identity of an object. A string on a
path in a dark forest could in fact be a snake. Moreover, the context
and setting in which an object appears, as well as expectancy and
emotional state, may affect object identification.

Thus, the PFCitself receives, in addition to data from the memory
system for object-related semantic knowledge, at least three major
inputs for top-down indexing (see Figs. 1 and 2). The PFC receives
rapidly arriving visual information on the external object via the
direct pathway of the iFOF, and the two streams of input, namely,
context- and expectancy-based reference information.

By what neural mechanisms does such facilitation take place?
To our knowledge, few studies have examined this question. Here,
we propose a conceptual mathematical model in an attempt to
move in such a direction.

3. Prefrontal network for object-related semantic knowledge

The role of the PFC-VLPFC/OFC in object recognition is, first,
to generate a guess on the identity of the object. In the present
context, the PFC receives, among others, the following three main
streams of projections to create such a guess on the identity:

I. Pathway I, as shown in Fig. 1, conveys rapid visual information,
probably via iFOF from the occipital visual systems (such as
V2/V4) (Bar, 2003; Fenske et al., 2006; Thiebaut de Schotten
etal, 2012).

. Pathway II conveys expectancy and emotional state via the

OFC-IT-amygdala triad (Ghashghaei & Barbas, 2002).

Pathway III conveys contextual information as “the gist of the

scene” from the retrosplenial cortex/parahippocampal cortex

(Fenske et al., 2006).

A few notes are in order.

—_—
—
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—

1. The early activity of the OFC, that is, the recognition-related
activity in the OFC, precedes cortical activity in the IT (Bar,
2006).

2. Itis suggested that gist-based contextual information transmit-
ted via Pathway III is quickly processed (Kveraga et al., 2007).

3. IT neurons are activated by top-down signals even without
bottom-up sensory signals (Tomita, Ohbayashi, Nakahara,
Hasegawa, & Miyashita, 1999).

As stated above, part of the PFC (the OSK network) may be “at-
tuned to the associative content of visual information” Chaumon et al.
(2013), and play the central role in the indexing task. We assumed
in the computational model that the OSK is a “super-imposed”
hetero-associative network in which indices for facilitation are em-
bedded. (For details, see Section 6.)

Signals transmitted via Pathway I serve as reference inputs, and
those transmitted via Pathways I and Il are regarded as contextual
inputs. This output guess from the OSK network is then sent to the
IT as a top-down trigger to facilitate activation of the image of the
“seen” object (Bar, 2003). The question of how the IT can activate
detailed object representation by means of the PFC bias index is
explained in Section 5.

4. Core mechanism of recurrent complex visual hallucination:
a working hypothesis

We have proposed the following working hypothesis on the
core mechanism of recurrent complex VH (RCVH) (Fujii et al.,
2014):
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Fig. 1. Object recognition in normal case and with conduction disturbances. PPA is a part of the PHC, and is involved in the representation of scene (Epstein & Kanwisher,
1998). PPA is activated when human subjects view topographical images of scene such as landscapes, townscapes, or rooms. When the same area is damaged, patients cannot
recognize the scene any more, but can see each object within the scene. We postulate that this is when attention is focused on it. Note, however, that the (semantic) identity
and visual image of an object are not provided by the PPA, but by the PFC and the IT, respectively. Hence, while the topographical background image of a scene is furnished
by the PPA, the foreground image (with identity) of each object is created by the interacting system of the PFC and the IT. The gist, or meaning of the scene is quickly
analyzed by RSC, and sent to PFC via Pathway III (Biederman et al., 1974). The hypothesized pathways (marked as XXX) where conduction disturbances occur. Then, the
index created by PFC is based on information via the remaining two pathways. The guess thus created may possibly be erroneous one, but still consistent with the context
and the setting. Abbreviations: PFC (VLPFC/OFC), prefrontal cortex (ventrolateral PFC/orbitofrontal cortex); IT (BA20, BA37), inferior temporal cortex, fusiform gyrus; V4/V2;
V1, visual cortices; RSC, retrosplenial cortex; PHC-PPA, parahippocampal complex—parahippocampal place area; OFC-IT-Amygdala TRIAD (Ghashghaei & Barbas, 2002);
iFOF, inferior fronto-occipital fasciculus (a branch of the fasciculus connecting mono-synaptically the PFC (OFC) with the visual cortices Sarubbo et al., 2013).

Principal disorder: “Temporary conduction disturbance occurs
somewhere along Pathway I”.
Consequently, the OFC’s prediction on object identity is made
essentially on the basis of only the context input and the
expectancy—emotion inputs.

In addition, we proposed that the following complementary
disorder may occur at the same time:

Complementary disorder—"“Conduction disturbance somewhere
between the IT and the occipital visual cortex (V2/V4) occurs as
well”.

Because of the complementary disorder, it could happen that
the IT is essentially blind to external objects at the center of atten-
tion, and that the IT loses the means to correct the hallucinatory
index from the PFC in the process of PFC-IT interaction.

To sum up, we conclude that the PFC creates the “seed” of a
particular hallucinatory image due to disturbance of information
via Pathway I, and the IT implements this false index in a detailed
image.

4.1. Pathophysiological bases related to the working hypothesis

Possible pathophysiology may be conduction disturbances
along pathway I and other pathways (Court et al., 2001; Kiuchi
et al, 2011; Ota et al., 2009; Reid, Sabbagh, Corey-Bloom, Tira-
boschi, & Thal, 2000; Sanchez-Castaneda et al., 2010).

Alternative, but not exclusive, scenarios viewed from the inter-
nal neuro-cognitive mechanism presented in this paper could be
possible: one is intrinsic pathology of the PFC, which may produce
false indices (via pathways that are intact); and another is loss of
attentional focus due to low level of cholinergic activity in the PFC
(Kanamaru, Fujii, & Aihara, 2013). These might lead to similar hal-
lucinatory symptom. We plan to conduct detailed studies on other
possible scenarios in the future.

VLPFC/ OFC
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layers - Pathway I1
D
TR .
1) =
S =
X & & middle/
S deep layers
&g
Pathway I
XXXXX

Fig. 2. PFC decision on the identity of an object is based on signals via
three pathways. In normal object recognition, the PFC (VLPFC/ OFC) receives
three streams of information via three Pathways, where Pathway I transmits
rapid projections of LFI (coarse) information (Bar, 2003) on the object at the
center of attention, Pathway II transmits expectancy and emotion via the OFC-
IT-Amygdala Triad (Ghashghaei & Barbas, 2002), while Pathway III transmits
contextual information, e.g., the gist (meaning) of the scene via the RSC. The PFC,
integrating with memory (object-related semantic memory stored in the PFC),
creates a prediction on the identity of the object at the center of attention. This
prediction, called “index” in the present paper, will facilitate as a priming signal
the reactivation of visual images of objects in the IT.

5. Object representation in the IT with top-down facilitation

The IT network receives an index from the PFC, and this bias-
ing signal could activate object representation even without inputs
from the visual cortices (Bar, 2004, 2006; Kastner & Ungerlei-
der, 2001; Tomita et al., 1999). We postulate that this situation
may occur in VH associated with DLB. We emphasize that IT neu-
rons are activated by top-down signals without bottom-up sensory
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Fig. 3. Schematic diagram of the PFC and IT networks. (A) Network architecture of the PFC. The network consists of a population of pyramidal neurons, and fast-spiking
GABAergic interneurons with contextual inputs and image inputs. (B) Network architecture of the IT. The network consists of a population of pyramidal neurons that are
reciprocally connected by recurrent connections and fast-spiking GABAergic interneurons with index inputs from the PFC.

input (Bar, 2004; Tomita et al., 1999). Moreover, attentional bias-
ing signals can be generated in the absence of any visual stimu-
lation whatsoever (Bar, 2006; Kastner & Ungerleider, 2001). The
basic question is how the IT can activate a relevant object repre-
sentation solely from a top-down index provided by the PFC. From
a computational standpoint, the basic question is on the nature of
the index received from the OSK network discussed in Section 3.

Since little information is available for answering such a ques-
tion, here we discuss two theoretical possibilities. The first possi-
bility concerns the active role played by the attentional and phasic
cholinergic projections onto the IT, which we discussed at ICCN
2013 (Fujii et al., 2014). Phasic (transient) cholinergic (ACh) projec-
tions from the nucleus basalis of Meynert (NBM) (Kanamaru et al.,
2013; Parikh, Kozak, Martinez, & Sarter, 2007) facilitate the tran-
sition of the IT network from a transitory (quasi-attractor) state to
an attractor state. Top-down attention may facilitate the transition
of the IT dynamics to the attractor regime while the index from the
PFC contributes to the jump into the specified attractor (Kanamaru
etal.,, 2013; Tsukada, Yamaguti, & Tsuda, 2013). If this is indeed the
case, the postulated index could be a small part of the OSK network
dynamics in the PFC.

However, whether phasic cholinergic projections from the NBM
take place (Parikh et al., 2007) in individuals with VH, is not
known, since attention deficiency is known as one of the principal
symptoms of DLB.

Another theoretical possibility, which we simulate in this work,
does not rely on special cholinergic projections from the NBM.
Instead, we postulate that the index provided by the semantic
knowledge system reflects its global activity, that is, a binary-
transformed spatial pattern of each identity. See Section 6 for
details.

6. Computational model of visual hallucination

This section presents a computational model of RCVH. An
overall structure of the present model is shown in Fig. 3; the model
is a unidirectionally coupled system of two neural networks.

The PFC-IT interaction has been postulated to be bidirectional
in that the two cortices may communicate as a process such as
biased competition in object recognition (Desimone, 1998; Fink
et al., 1996; Fink, Marshall, Halligan, & Dolan, 2000; Grill-Spector,

2003; Henderson & Hollingworth, 1999; Shimamura, 2000). How-
ever, our computational model is assumed to be a unidirection-
ally coupled system for the following reason. We simulate object
recognition under the assumption that both Pathway I connecting
OFC and the visual cortex (principal disorder), and the axonal fibers
connecting the IT and visual cortex (complementary disorder), are
“disturbed”, even if only temporarily. Thus, as shown in Fig. 1, both
the PFC and the IT cortex are essentially blind to the external object
at the center of attention.

The PFC creates a hallucinatory index based solely on its own in-
ternal interpretation of context and expectancy. The IT implements
this “false” index in a visual image. In a normal case, this IT process
would, based on detailed bottom-up information from the visual
cortex, be complemented by interactions with the PFC when nec-
essary. In RCVH, this PFC-IT interaction is not expected to function
as it would in a normal cognition process.

6.1. Model network for the prefrontal cortex

The first network is the model of the PFC, that is, the OSK
network (Section 3), and the second is the model of the IT as the
object representation network (Section 5).

The model PFC receives, among others, three kinds of signals
from Pathways [, II, and III as explained above. Pathway I conveys
images of the object at the center of attention (Bar, 2003) via long-
distance connections from visual cortex, plus some random back-
ground noise. Pathway Il conveys emotion and expectancy via the
OFC-IT-Amygdala triad (Ghashghaei & Barbas, 2002), and Pathway
III conveys the gist-based contextual information from the retro-
splenial and parahippocampal cortices (Fenske et al., 2006). We
lumped the three pathways into two, namely, Pathway I and Path-
way II/III, for the sake of computational simplicity without losing
the essence of the structure. Signals from Pathway I, namely, sen-
sory inputs, play the role of reference input. Signals from Pathway
II/11I, namely, contextual inputs, are regarded as association inputs.
The output guess (in the form of the index) from the PFC network
is then sent to the IT as a top-down trigger to facilitate activation
of the image of the “seen” object.

In the construction of the computational model, we adopted the
Pinsky-Rinzel neuron model (Pinsky & Rinzel, 1994) for pyramidal
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neurons and the Wang-Buzsaki model (Wang & Buzsaki, 1996) for
fast-spiking interneurons (see Appendices A and B). The inputs are
assumed to be conveyed by Poisson spike sequences with the alpha
rhythm for contextual inputs and the gamma rhythm for sensory
inputs.

We first constructed the PFC and IT models separately, and com-
bined them to check their capability as a computational hallucina-
tor.

Fig. 3 shows the PFC network (i.e., the OSK network). This net-
work with N pyramidal neurons constitutes a hetero-associative
network, associating contextual inputs with visual inputs. The net-
work possesses plastic synaptic connections of contextual inputs
to the pyramidal neurons in the presence of visual images as
reference inputs, which may be a reflection of facilitation. We em-
bedded “superimposed” hetero-association in the synaptic con-
nections; in other words, we embedded multiple correspondence
between context inputs and visual images. It should be noted
that in conventional hetero-associative networks, only one-to-
one correspondence between two kinds of patterns is formulated:
each pair of corresponding different patterns, (x™, y™) (m =
1,..., M), is associated and embedded in synaptic connections for
all pairs. On the other hand, in the present network, M x M pairs of
different patterns, (x®,y?) (i,j = 1, ..., M), are associated and
embedded. Here, contextual inputs are encoded as binary patterns
whereas gray scale levels representing means of real numbers are
adopted for visual images.

Fig. 4 shows a typical example of the input-output relation, ac-
companying the internal dynamics of spike patterns. A pair con-
sisting of context C1 and visual pattern E1 was input during some
interval of time, and after that interval, only C1 was input; by in-
putting C1 only, we simulate visual information being lost by con-
duction disturbance due to damage to long-range fibers between
the visual cortex and PFC (Pathway I). Spike sequences of outputs
of pyramidal neurons are also shown in the form of raster plot.

The outputs of pyramidal neurons in the PFC-OSK network
must convey index information expressing contextual facilitation
caused by an association of complex information on context and
visual images.

6.2. Index as a spatial pattern of identity

We introduced an auxiliary operation in the pyramidal neurons,
namely, another threshold operation. For spike sequences during

- . T
some time interval T;, we calculated the number of spikes x;’ for
. T . T .
neuron . Let (x;') be the time average of x;,’. The proposed index for

the output of neuron i is given by IiTj = G(xl.Tj — (XiTj)), where 6(z)
is a Heaviside function: 8(z) = 1 if z>0 and otherwise 6(z) = 0.
A total index of the network during the interval T; is expressed as

avector, I = (IT’, el I:,’).

Fig. 4 (D) shows the direction cosines of network outputs during
T; and T, and the corresponding indices I' and I2. During T; when
both the contextual input C1 and the visual input E1 are provided,
the network output shows a preference toward index I' over index
I?. On the other hand, during T, when only contextual input C1 is
provided, the network output shows a preference toward index I*
over I,

How does this change of index information in the PFC influence
the output of the IT network? Let us construct a model network of
the IT and study the network activity when the IT network receives
inputs on index information.

6.3. Model network for IT—object representation network

For the IT, we constructed a network model, that is, the Object
Representation Network. We presumed that this network would
activate a visual representation of an image triggered by an index
signal from PFC.

We present the architecture of our model, which consists two
subnetworks. The main part is a recurrent network in which im-
ages of visual objects are built-in as attractors, say O1 and O2.
Another part is a pre-processor (i.e., an interpreter for incoming
indices) that is designed to be a hetero-associative network be-
tween indices and visual images of objects. In the present sim-
ulation, such hetero-associations are built-in a priori, but in the
realistic brain such associations could be established via plastic-
ity. Visual images of the objects, 01 and 02 are constructed by dis-
cretizing object images, E1 and E2, respectively, with a threshold
of 0.8.

The assumption that the main network in the IT functions as
an attractor network may stem from experimental observations
on activity in visual memory task (by, e.g., Tomita et al., 1999).
Furthermore, their observations suggest that IT neurons activate
even without direct bottom-up visual information. Thus, it is
plausible to consider that the IT reactivates visual images caused
by only top-down signals—an index in the present paper.

Fig. 5 shows numerical results of the activation of visual images
of objects triggered by the index resulting from PFC outputs. During
the interval when the PFC receives both the contextual input C1
and the visual image E1, the IT produces a clear object image O1
corresponding to E 1. On the other hand, during the interval when
the PFC receives the contextual input C1 alone, which implies a
deficit of visual information, the IT produces another object image
02. The production of 02 is due to the association with C1, but this
contextual information could be incorrect.

Thus, this numerical result implies the possibility that distur-
bances of visual information in the PFC brings about a “false” index
for the object, which then gives rise to evocation of a mismatched
visual object image in the IT. This kind of mismatched image in the
IT may be one of the key mechanisms of VH in DLB.

7. Summary and discussions

In this paper, we proposed a computational model of the PFC-IT
complex to elucidate the neural mechanism of RCVH in DLB. Sim-
ulation results suggest the possibility that deficits of visual infor-
mation in the PFC bring about a hallucinatory index, which in turn
cause the production of a mismatched visual object image in the IT.

As stated in Section 4, the hallucinations in DLB may occur due
to the two disconnection events, the principal and complementary
disorders. The PFC-VLPFC and OFC are involved in the first discon-
nections, while the IT is related to the second one. The three path-
ways related to the principal disorder convey signals to the PFC
and are all critical in the decision of identity. Of these three, only
Pathway I is hypothesized to be damaged, while Pathways I and III
appear intact. This may give an account for the seemingly strange
symptomatology of VH in DLB introduced in Section 1.

In other words, the key point is the role of intact indices for
top-down biasing in the prefrontal-inferior temporal interacting
system that is disconnected from sensory inputs.

We emphasize that the index system in the PFC may be intact, but
the PFC is disconnected from sensory inputs.

As other theoretical frameworks that look similar to top-down
facilitation, one may consider the following two theories: Con-
vergence Divergence Zone (CDZ) theory (Damasio, 1989; Meyer &
Damasio, 2009), and Hierarchical Dynamical Models (HDMs) the-
ory (Friston, 2008; Friston & Kiebel, 2009). However, the CDZ the-
ory does not include the cortical “shortcut” such as the Pathway I,
which is a core structure to produce RCVH in DLB in the present
theory. Furthermore, with the CDZ theory, it would be quite dif-
ficult to elucidate the neural mechanism of Hallucinatory images
that are additionally superimposed on a normal background scene,
only at the center of attention. On the other hand, the HDMs theory
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Fig. 4. Effect of conduction disturbances in PFC. (A) Time sequence of the amplitude of image inputs. Inputs were applied to each cell assembly at time 0 ms, and stopped
at time 2250 ms. (B) Time sequence of the amplitude of contextual inputs. The inputs were applied to each cell assembly at time 0 ms, and supplied until the end of the
simulation. (C) Raster plot of pyramidal neurons in the PFC network. (D) Overlapping between current activity of PFC pyramidal neurons and index patterns. Different colors
indicate different indices (red dotted line: I'; blue solid line: I?). The network received C1 and E1 between t = 0 and 2250 ms, and E1 was turned off at t = 2250 ms.
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Fig. 5. Effect of conduction disturbances in the IT. (A) Time sequence of amplitude of the image inputs in the PFC. (B) Time sequence of the amplitude of contextual inputs
in the PFC. (C) Raster plots of IT pyramidal neurons. (D) Overlapping between current activity of IT pyramidal neurons and patterns of object images. Different colors indicate

different object images (red dotted line: O1; blue solid line: 02).

refers to the prediction error in perception. Although the predic-
tion error plays an essential role in any perception including hal-
lucinations, it does not directly refer to the mechanism of RCVH in
DLB. However, the somatic maker hypothesis by Damasio (1994)
and the predictive coding hypothesis by Friston (2005, 2008) and
Friston and Kiebel (2009) might be related to the process of the
production of “index” in prefrontal cortex. In this respect, both the-
ories will be helpful to develop the theory of complex visual hallu-
cinations that we described in this paper.

Other important characteristics of RCVH introduced in Section 1
are, however, beyond the scope of the present model. For instance,
the model does not address the relationship between RCVH in DLB
and decreased cholinergic activity in the cortex (Collerton et al.,
2005). The decrease in cortical and subcortical cholinergic levels

(see, Kanamaru et al., 2013) may bring about attention deficit, but
its causal relationship with RCVH is not well understood. Also, the
neural mechanism of the long-term persistence of hallucinatory
images lasting up to a few minutes is not well understood, and
probably does not fall within the framework of conduction distur-
bances. It should also be noted that the spontaneous persistence
time of VH is most frequently a few minutes, but it possesses a
distribution from seconds to hours (Mosimann et al., 2006). The
long-term persistent of VH might arise from dynamic interactions
between the PFC and IT (Shimamura, 2000), regulated by neuro-
modulators such as dopamine and acetylcholine. However, no re-
port has been published that clearly shows its neural mechanism.

Another interesting phenomenon in the retention of VH has
been reported: VH suddenly disappears when correct contextual
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information is provided (See, for example, http://www.nhk.or.jp/
gatten/). Thus, VH in DLB seems to be specifically and dynamically
associated with contextual information.

In this paper, we examined the hypothesis that when some
connections (or brain fasciculi) between the PFC and visual cortex
are lost due to conduction disturbance, the PFC produces a false
index and hence the IT inevitably activates a wrong image. This
result is the first step toward gaining an integrated view of RCVH
in DLB. A unified theory remains a topic for future study.
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Appendix A. Pyramidal neurons

We employ the two-compartment model for pyramidal neu-
rons that was proposed by Pinsky and Rinzel (1994) for both the
PFC and the IT. The model consists of somatic and dendritic com-
partments comprising different active ion-currents and synaptic
inputs.

The membrane potentials of each compartment are given by

C%__(V_E)—I —1 —F
m dt - 8L(Vs L Na K—DR n
+ (&/p)(Va — Vo) + Is/p,
dVy
map = —g1(Vg — E1) — Ica — Ix—anp — Ix—c (A1)

—14,/(1 = p) + (8/(1 — ) (Vs — Vo)
+1q/(1 = p),

where Iy, and Ix_pg in the somatic compartment are the fast
sodium current and the delayed rectifier potassium current, re-
spectively. Ica, Ix_c, and Ix_anp in the dendritic compartment are
the calcium current, the Ca-activated potassium current, and the
potassium after-hyperpolarization current, respectively. The com-
partments are electrically connected via conductance g, and p is
the percentage of soma compartment area. The ionic currents are
given by

Ina = gNamgoh(vs — Ena),

Ix—pr = gx—prN(Vs — Ex),

Iea = gcas® (Va — Eca). (A2)
Ix—anp = 8k—anrq(Va — Ex),
Ix—c = gk—ccmin(Ca/250, 1)(Vyq — Eg).
The kinetics of gating variables are described by
dx
— = @(ax(1 —x) — B), (A3)

dt
where x denotes the different kinetic variables h, n, m, s, andq.
ay and B, are the rate functions of channel opening and closing,

and ¢ tunes the time scale of the rate.
0.32(—46.9 — V;)
= exp((—46.9 — Vy)/4) — 1’
0.28(Vs 4+ 19.9)

exp((Vs +19.9)/5) — 1’

_ 0.016(—24.9—-V))
exp((—24.9 — Vy)/5) — 1’

Bn = 0.25exp(—1 — 0.025V5),

:3m=

Op

o = 0.128 exp((—43 — V;)/18),
4
Bn = ,
1+ exp((—20 — Vy)/5)
1.6 (A4)
& T I f exp(—0.072(Vy — 5))
g — 0.02(V4 + 8.9)
P exp((Vg +8.9)/5) — 1
®, = 0.01min(Ca/500,1), B, = 0.001,
exp((Vyg +50)/11) — exp((Vgq 4 53.5)/27)
_ 18.975
%=1 va< -0,
2exp((Vy +53.5)/27) V4 > —10,
B 2exp((Vq 4+ 53.5)/27) —a, V4 < —10,
Pe = 0 V4 > —10.

The kinetic variable m was approximated by its asymptotic value:

Om
My = ————. (A.5)
* A + Bm
The calcium concentration Ca satisfies
dCa
a = —0.13I¢; — 0.075 Ca. (A.6)

The synaptic current IS, and I¢_ are defined below (see Ap-
pendix C). We used the following standard values for the pa-
rameters of the pyramidal neuron. The maximal conductances
(in mS/cm?) were g = 2.1,gva = 30, gx_pr = 25,8 = 0.1,
gca = 2.5, gx_anp = 0.8, and gx_ = 15. The reversal potentials
(in mV) were Ex = —75, Eya = 60, Ec; = 80, and E; = —60. The
applied currents (in wA/cm?) were Iy = —0.5, I; = 0. The capac-
itance was C, = 3 wWF/cm?, the time scale was ¢ = 1, and the
proportion of soma area was p = 0.5.

Appendix B. Fast-spiking GABAergic interneurons

We employ the Wang-Buzsaki model (Wang & Buzsaki, 1996)
for the interneurons, which is a single compartment model with
sodium and potassium channels. The equation for the potential is

dv .
CmE = —Ina — Ik — I — Ly + s, (B.1)

where Iy,, Ix, and I, are the sodium, potassium, and leak current,
respectively. I is the constant current. The ionic currents are given
by

Ina = gNamgoh(V - ENa)»

Iy = gn*(V — Ey), (B.2)
I =gu(V—Ep).
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The kinetic variables h and n obey Eq. (A.3), and m obeys Eq. (A.5).
The rate constants are given by

—0.1(V + 35)
exp(—0.1(V +35)) — 1’
Bm = 4exp(—(V + 60)/18),
an = 0.07 exp(—(V + 58)/20),

Om =

B 1 (B.3)
P = exp(—0.1(V +28)) + 1°
—0.01(V + 34)
o exp(—0.1(V +34) — 1’
B = 0.125 exp(—(V + 44)/80).

We used the following standard values for the parameters of
interneurons. The maximal conductances (in mS/cm?) were gy, =
35,g¢ = 9, and gg = 0.1. The reversal potentials were Ey, = 55,
Ex = —90, and E; = —65. Other parameters were G, = 1, ¢ = 5,
and Iz = 0.

Appendix C. Synaptic connections

The synaptic currents for the PFC networks are given by

Ign = Ic + It + Ine,

Ioyn = lie, (C.1)
I{;n - Iez + Ini,
where
Ne Ne
e = <g(/_\MPA Z w}’FCSJAMPA,C n gCNMDA Z w]!’FCSJNMDA,C
j=1 j=1
x (14 0.28 exp(—o.062V))—1> (V — Egn),
I = (gé\MPAe(m)SAMPAE +gNMDAe(m)SNMDAE
x (1+0.28 exp(—o.oszv»*l) (V — Egn),
(C2)

Ne
Li = &ei Z o ez(v Esyn)

AMPA AMPA ne NMDA NMDA ne
Ine ( ne + Ene

x (1+0.28exp(—0.062V)) ") (V — Egyp),
L = gnisni(v - Esyn)»

Ni
lie = i Y wifsi(V — Ecapa)-
j=1

Here I, I, and Iy (N denotes ne and ni) are synaptic currents of a
contextual input, a sensory input, and a noise input, respectively. Io;
and I, are synaptic currents from pyramidal neuron to interneu-
ron, and from interneuron to pyramidal neuron, respectively. V is
amembrane potential, and s; is a kinetic variable labeled by the in-
dexj of a presynaptic neuron. e™ is the mth sensory input pattern,
and assumed to be uniformly distributed between 0 and 1. The pa-
rameter values of conductance (in mS/cm?) for the PFC simulation
are gAMPA = 0.03, gMMPA = 0, gAMPA = 1, gNMPA — 0, g,; = 0.05,
g,‘;‘eMPA = 0.005, gNMDA = 0,8, = 0.01,andg;. = 0.03.The reversal
potentials (inmV) are Esy, = 0, Egaga = —75.

The synaptic currents for the IT networks are given by
Id = lrec + 11 + Ipe,
Issyn - Iie»

B = loi + I,

syn

(C3)

where
Ne Ne
Il — (gIAMPAZw;TJSJAMPAJ + gINMDA w}T’ISJNMDA’I
L =
x (14 0.28 exp(—0.062V)) ™" | (V — Egyn),

(C.4)

PA IT rec AMPA rec
Lec = (grec §
N
NMDA IT,rec \NMDA, rec
* 8rec § :wj 5
j=1

x (1+0.28 exp(—0.062V))1> (V — Egyn).

Here I; and I are a synaptic current of the index from the PFC,
and recurrent collateral from other pyramidal neurons in the IT.
L, lie, and Iy (N denotes ne and ni) are the same equations as
Eq.(C.2). The parameter values of conductance (in mS/cm?) for the

IT simulation are g™ = 0.0045, g"MPA = 0.0072, gAPA = 0.02,

rec
NMDA AMPA ,NMDA
gl'eC

= 0.032,and g = 0.11. Other parameters ge;, gro' +&ne’
&ni» Esyn, and Egapa have the same values as in the PFC simulation.

The connection matrices were determined in the following way.
Each component of the connection matrix w® from pyramidal neu-
rons to interneurons takes a value of 1 or 0. Each interneuron re-
ceives synaptic inputs from four pyramidal neurons, which are
chosen randomly from the whole pyramidal neuron population.
The elements of the connection matrix w' from interneurons to
pyramidal neurons are assumed to be uniformly distributed be-
tween 0 and 1.

The synaptic strength wf*

PFC Z X(m) y](n)

m,n=1

is given by

(myn=1,...,M), (C5)

where x™
tern, and y;
in the PFC.

The dendritic compartments of IT neurons receive the spike
trains from the PFC neurons. The synaptic strength wIT "is given by

me ™ =1, M),

where x ) is the ith component in the mth index pattern, and y(m)
is thejth component in the mth object image. We assumed M = 2
for both the PFC and IT simulations for simplicity.

Two object images are embedded into the recurrent excitatory
synaptic connections by Hebbian synaptic modification. The Heb-
bian rule specifies a weight of 1 for a connection between two ac-
tive neurons, and a weight of 0 otherwise:

IT rec __ (Zy(m) (m)) s Ox) = {(1) g 2 83:

where Y1 ) is the ith component in the mth object image, each of
which is encoded by the value 1 (firing state) or O (resting state).

These weight matrices wj;¢, w ,I]T I and wIT "¢¢ are fixed during sim-
ulation.

The synaptic gating variables for the AMPA and NMDA synapses
obey

d SAMPA

dt

dSNMDA

dt

is the ith component in the mth contextual input pat-
™ s the jth component in the nth sensory input pattern

(C.6)

(C7)

AMPA
— Bas™,

= @(Vpre + 40) (Cs)

ﬂNSNMDA,

= O (Vpre + 50) — (C.9)
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T and

where Ve is the presynaptic potential, and 4 = 0.5ms™
Bn = 0.0067 ms~! are decay rates. 4
The synaptic gating variables, s¥¢, s¥F, sX7¢ ands™ (X de-

notes AMPA and NMDA), obey

ds

== D 8t — Hhgisson) — Be. (C.10)
k

where k. is the time of the kth spike in a Poisson spike train.
Each spike train is independently generated by a Poisson process
with an average firing rate of 12 Hz for contextual inputs, 40 Hz for
sensory inputs, and 1 kHz for background noise.

The synaptic gating variable s obeys

ds
- = aiF(Vpre)(l =) — Bis,

dt (C.11)
F(Vpre) = 1/(exp(_vpre/2) +1),
where o; = 12ms~' and 8; = 0.1ms~! are the rise and decay

rates for the inhibition of pyramidal neurons.

The PFC and IT networks are composed of 200 neurons, respec-
tively: 160 pyramidal neurons (80%) and 40 interneurons (20%).
GABAergic interneurons project via GABA4 synapse to the somatic
compartment of pyramidal neurons, and the pyramidal neurons
project via AMPA synapses to interneurons. Numerical integra-
tion was performed by a fourth-order Runge-Kutta method using
a 0.05 ms time step.

Appendix D. Calculation of overlapping

We defined a degree of memory retrieval by calculating the
overlapping M* between the reference pattern (e.g., index, object
image) and the current network state. The overlapping is defined
by

" - XA
Il X2 @) ||

where n* is the uth reference pattern, and X2f(t) is an N-
dimensional vector for an N-neuron network:

XA = (210, x5 (1), ..., xy" (D) - (D.2)

M~ () = (D.1)

Here xiAf(t) is the number of spikes of the ith neuron during the
interval (t + At) and At = 50 ms is fixed.
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