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Chaotic itinerancy is an autonomously excited trajectory

through high-dimensional state space of cortical neural activity

that causes the appearance of a temporal sequence of quasi-

attractors. A quasi-attractor is a local region of weakly

convergent flows that represent ordered activity, yet

connected to divergent flows representing disordered, chaotic

activity between the regions. In a cognitive neurodynamic

aspect, quasi-attractors represent perceptions, thoughts and

memories, chaotic trajectories between them with intelligent

searches, such as history-dependent trial-and-error via

exploration, and itinerancy with history-dependent sequences

in thinking, speaking and writing.
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Introduction
Motivated by studies for the elucidation of the dynamical

mechanism of the complex transitions observed in brain

activity, many researchers have proposed conceptual fra-

meworks for understanding such a mechanism. Among

others, we proposed a neural chaotic itinerancy [1–
3,4��,5], where typical cortical transitions are not merely

random but are transitory and chaotic dynamics (see, e.g.,

[6]). Chaotic itinerancy is a prerequisite for the persist-

ence of memories during learning. In a neural network

model, with recurrent connections of excitatory units

under the presence of inhibitory units, the appearance

of chaotic itinerancy among quasi-attractors as memories

allows the network to learn new input patterns while

maintaining memories. The significance of chaotic itin-

erancy becomes clearer in the situation of human com-

munication. Indeed, to communicate, each person needs

rapidly to construct and reconstruct history-dependent
www.sciencedirect.com 
memory structures, which must not be disturbed by

others’ actions. One can construct coupled-neural net-

works to account for this situation [7], and extend them

further to more realistic and biologically oriented neural

networks consisting of a neuron model by Pinsky and

Rinzel [8] for excitatory neurons, and another one by

Wang and Buzsáki [9] for inhibitory neurons [10].

Hierarchical structure of memory
Memory is constructed in a hierarchical manner. The first

step, a stage of simple memory, according to Marr [11], is

realized via embedding of input patterns as attractors by

means of, for example, a Hebbian learning algorithm.

Auto-associative memory models are typical for the

neural realization of such algorithms (see, e.g., [12]).

The realization of a critical state of the attractors through

multiple-metastable states can produce chaotic itiner-

ancy. Hebbian learning then strengthens the paths con-

necting such quasi-attractors rather than any one attractor,

because of the development of dynamical trajectories via

chaotic itinerancy. This is the second stage of memory,

memory of the association process; namely episodic
memory. The third stage was studied recently by Kurikawa

and Kaneko [13], and suggests that the input–output

relation is embedded as memory, thus describing the

stage of relational memory between sensation and action.

Such memory is dynamically represented by bifurcations

of dynamical states until action is output when infor-

mation of sensation is input; chaotic itinerancy appears in

this bifurcating process. This stage of memory formation

can be considered to be a precursor of higher-order

memory formed through communication, because

output-driven information processing is more effective

than input-driven processing when people are commu-

nicating to produce reafference via preafference (see, e.g.,

[14��]).

Communicating brains
Chaotic itinerancy also appears in interacting systems,

typically appearing in the brain activity of communicating

people in the form of chaotic transition between synchro-

nization and desynchronization (see, e.g., [15,16�,17]).

Furthermore, an atmosphere generated by cooperative

actions forms the basis for the creation of meaning when

people are communicating. In relation to this situation,

recent studies with mathematical models of neural net-

works that are based on a variational principle providing a

constraint to the system showed the generation of func-

tional units, that is, functional differentiation with the

help of chaotic itinerancy [18,19].
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The appearance of chaotic itinerancy in this communi-

cation paradigm is realized via the generation of meta-

stable states [20,21�] or via critical states (see, e.g., [16�]).
Metastable states have also been proposed as the transi-

ent states of ongoing coordination dynamics in neural

systems, which are linked to intermittency, chaotic itin-

erancy and self-organized criticality in dynamical systems

[20]. In a similar way to acquisition of the robustness of

critical states via synaptic learning [16�], metastable states

can appear in a robust manner via interacting brains in

communication paradigm [21�]. Thus, the appearance of

metastable states or critical states is a necessary condition

for chaotic itinerancy but not a sufficient condition (see

[22] for mathematical conditions for the production of

chaotic itinerancy). Let us see the dynamical develop-

ment in a neighborhood of such states.

Neutral stability and criticality
A quasi-attractor in chaotic itinerancy is an attractor

because it possesses a positive measure of attracting

regions. Thus, a quasi-attractor is different from a saddle

in cases without symmetry, where symmetry restricts dyna-

mical trajectories to some subspace of a whole state space,

providing the reduction of space dimension. Nevertheless,
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dynamical trajectories leave a quasi-attractor and become

chaotic until they reach another quasi-attractor (Figure 1).

In this respect, a quasi-attractor is a Milnor attractor [23] but

not a conventional attractor. However, the dynamical

trajectories are trapped in a basin of attraction when a

quasi-attractor as a Milnor attractor exists; thus, no chaotic

wandering appears unless a basin is riddled. Therefore, to

obtain chaotic transitions, a quasi-attractor should not be

stabilized, at least, in the sense of linear stability. Then, in a

neighborhood of a quasi-attractor, the dynamics begin

from at least the second order, because of the linear term

vanishing; dx/dt = bx2 + O(x3), where x denotes a state vari-

able and b denotes a parameter. In relation to this structure

of neutral stability, Kozma et al. [16�] showed, with a

hierarchical model of neuropercolation, that higher

moments than the second order in critical states act in

giving the indices for the appearance of perception and

cognition. Compared with the exponential convergence in

time of dynamical trajectories to a conventional attractor,

caused by the presence of a linear term, the convergence to

a quasi-attractor is much slower in an algebraic manner.

This type of slow convergence is a realization of neutral

stable states. Usually, this critical state is yielded via

bifurcations, so that the dynamical system is structurally
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itinerancy. The dynamics develops on a smooth m-dimensional manifold
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inlet and the outlet chaotic trajectories, which connect such a quasi-
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unstable and hence not observed generically. However,

such a critical state can be generically observed in network

systems with scale-free properties because of a mechanism

similar to self-organized criticality [16�,24,25]. Actually, the

neuropercolation model describes robust and stable criti-

cality in large assemblies of neural cells [16�]. In such a

model, intermittent transitions between synchronization

and desynchronization stably occur in a critical regime

[16�], which is quite similar to chaotic itinerancy between

synchronization and desynchronization in gap junction-

coupled neural networks [17].

The dynamic process and its transition rule were studied

in a recurrent network with excitatory neurons, each

receiving inhibitory signals, a structure found in common

in both the neocortex and the hippocampus, and a circle

map with criticality as a transition rule was found. The

criticality was robust for changing network parameters

[1,2]. Here, criticality appeared in two ways: a circle map

was in a critical stage between a chaotic map and a stable

one, and fixed points representing memories were Milnor

attractors but not conventional ones. In this critical situ-

ation, dynamical trajectories slowly approached quasi-

attractors, but these can develop along divergent flows

before reaching quasi-attractors. Then we call a neighbor-

hood of a quasi-attractor an attractor ruin.

Learning via critical states
Furthermore, one can study the criticality of dynamics in

neural learning in a framework of information geometry

[26]. Let us consider a set of multilayer perceptrons.

Learning occurs by changing the connection strengths

of neuronal units. Here, a set of modifiable connections

forms a variable base of coordinates, which describes the

dynamics associated with learning. In neural networks,

there exist symmetries such as, say, w1j = 0 for all j in a

certain layer. These symmetries bring about identifi-

cation of the networks. However, on such a subspace,

non-identifiable networks remain, and these bring about

singularities in the space of distribution of the networks.

Dynamical trajectories in some subset of such a space

converge to such singularities, implying a failure of learn-

ing, but in some other subset of space, divergent flows

appear in a neighborhood of such singularities; this

implies the presence of an appropriate learning algorithm.

Thus, singularities are critical, or neutral, and appear as

Milnor attractors [27]. Here, the appearance of a Milnor

attractor implies the plateau phenomenon, whereby

acquisition of adequate learning takes a long time.

Thus, the general framework of learning suggests that the

appearance of neutral stability in the cortical neural system

also plays an important role in learning of the relationship

between a real-world object (signifié in French; signified

in English) and its symbolic representation (signifiant in

French; signifier in English). An understanding of such a

relationship is essential for human intelligence capable of
www.sciencedirect.com 
acquiring sufficient skills to change both a situation in the

world and its meaning. In order to classify illocutionary

acts, Searle [28] introduced the notion of ‘the direction of

fit’, thereby determining which of the symbols (words) and

objects (the world) can be the basis of a viewpoint as

‘origin of coordinates’ or ‘fixed point’. He applied this

aspect to the classification of two categories of sentences:

constative and performative sentences. Constative sen-

tences describe situations happening in the world, for

example, ‘there are two apples in this room’, whereas

performative sentences do not describe the world but

change a situation in the world, for example, ‘put an apple

on the table’. In the former case, the situation in the world

is the basis of the viewpoint, and therefore the direction of

fit is ‘words-to-the-world’; that is, from signifier to signi-

fied. On the other hand, in the latter case, the sentence

changing the situation is the basis of the viewpoint, and

therefore the direction of fit is ‘the-world-to-words’; that is,

from signified to signifier.

Searle further pointed out that one exceptional case —

declarative sentences — remains unclassified into these

two categories. Declarative sentences, for example, ‘we

now open the workshop’ contain both constative and

performative sentence features. This is because declara-

tive sentences describe the situation that has just been

declared and also change the situation by the declaration.

Thus, a declarative sentence possesses two bases with

opposing directions and thus acts as if it is a zero vector,

appearing in the case of neutral stability or criticality, as

mentioned above.

On the basis of this theoretical minimum, it is important

to study the difference in abilities between humans and

animals for a deep understanding of human intelligence

from the biological evolution viewpoint (see, e.g.,

[29,30]). Matsuzawa and his colleagues investigated the

language acquisition of chimpanzees with a genius chim-

panzee named Ai, in the ‘Ai project’ (see, e.g., [31]). Ai

could learn associations from colors to corresponding

symbols, but she could not apply an inverse process of

association from learned symbols to colors. Therefore,

what Ai learned was the direction of fit, from signifier to

signified but not an opposite direction of fit. In other

words, Ai acquired association, which possesses the same

direction of fit as constative sentences, but could not

change the world by using learned symbols. Interestingly,

human infants can apply both directions of fit by learning

only a single direction of fit. One hypothesis, proposed by

Osawa [32], suggests that human infants learn the

relationship between signifier and signified by language

acquisition in declarative circumstances. If that is correct,

it would be reasonable to think that learning via a neutral

state or a critical state could differentiate human com-

munication from animal communication.

In mathematical models of neural networks, a pair associ-

ation of (A, B) can easily be realized by means of a hetero
Current Opinion in Neurobiology 2015, 31:67–71
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association learning algorithm in a hetero association

network. Then, for the input A, the output is B, and vice

versa, and thus it is symmetric. Furthermore, if the output

is expected to be B for the input A, supervised learning

could be adopted. Thus, it is well known that a certain

neural network learns ‘A implies B’. However, such a

model cannot produce ‘B implies A’ simply by learning ‘A
implies B’, as in the case of Ai’s learning of symbolic

representations of colors. As far as we know, a neural

network model for realizing symmetric association by

learning only one direction of association has not expli-

citly been proposed. On the other hand, a large-scale

neural network generically produces chaotic transitions

among learned states, that is, chaotic itinerancy. Tran-

sition is symmetric in the sense of possibility, if it goes

through neutral stability. In other words, the transition

paths not only from A to B but also from B to A are

strengthened by Hebbian learning. Therefore, the ques-

tion of how the internal structure of a neural network is

modified to produce chaotic itinerancy in supervised

learning, such as a learning of ‘A implies B’, must be

an important topic to study in cognitive neurodynamics.

Conclusion
We emphasized the neurobiological significance of chao-

tic itinerancy with some conceptual frameworks. Chaotic

itinerancy was proposed to play essential roles in the

hierarchical formation of memory and also in learning

the meaning of symbols.
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