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Abstract 
Recent discovery of the massive presence of gap junction couplings among neocortical FS 

(and LTS) interneurons poses serious questions about their collective dynamical behavior, and 
their possible cognitive roles. We present here the theoretical possibility that a class of 
neurons coupled by gap junctions may emerge spatio-temporal chaos itinerant among 
attractors in Milnor’s sense, which in turn organizes synchronous cell groups transiently.  
Some physiological observations from the neocortex, e.g., local field potential (LFP) data 
exhibiting transient synchrony may provide evidence. We suggest also possible role in the 
so-called binding problem. 
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1.  Introduction  

Recent physiological discovery of ubiquitous presence of gap junctions among 
FS (and among LTS) interneurons in the neocortex poses serious questions about 
both their dynamical behavior in in vivo neocortex and their role in cognitive 
functions.  It is generally believed that “a (gap junction-coupled) network of FS 
cells in the neocortex may play a key role in coordinating cortical activity…” (M. 
Galarreta & S. Hestrin, 1999 [5]), or “interneurons generate a variety of  
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synchronous inhibitory rhythms in the neocortex…” (J. R. Gibson et al., 1999 [6]).  
Little is known, however, how those interneurons collectively behave when 
coupled by gap junctions in a massive way.  

The purpose of this paper is to present a new result on the collective dynamics 
of gap junction-coupled neuron systems, based on characterization of nonlinearity 
of neuron classes [4] . We then discuss possible implications on the behavior of 
FS cells in the neocortex, suggesting the relation to the observed neocortical LFP 
(local field potential) fluctuations and transient synchrony [4]. Also, we propose 
the possibility that the dynamical organization of synchronous cell assemblies by 
the itinerant chaos may play the role of feature bindings. 

2.  Emergent chaos in class I* neurons 
 

As Hodgkin pointed out in 1948, there exist two classes of “neurons” (actually, 
“axons”), i.e., class I “axons which are capable of repetition over a wide range of 
frequencies, varied smoothly over a range of about 5-150 impulses per sec.”, and 
class II “axons which usually give a train of impulses of frequency 75-150 /sec 
which was relatively insensitive to changes in the strength of the applied current” 
[8]. It is now generally recognized that most of cortical neurons are of class I [1] 
in the sense of Hodgkin. Mathematically, the difference of behavior between these 
two classes is attributed to that of generation mechanism of action potentials: 
saddle-node bifurcations (class I), and subcritical Hopf bifurcations (class II). 
Although the concept of “class” of neurons does not depend on the number of 
variables, we restrict our arguments for a moment to a reduced form
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two-variables, where the first variable, say V, may represent the membrane 
potential, and the second one, R, an activation state of, e.g., some potassium 
channels in a generalized sense [10], [12], [19]. With the injected current strength 
being denoted by I, the single cell equation may be written as:  

If we denote by NV = {(V,R)| 0),( =+ IRVf  } and NR = {(V,R)| ),( RVg = 
0} the nullclines of V and R, respectively, then class I neurons have generally J- 
(Morris-Lecar model) or U-shaped (reduced Connor model due Rose-Hindmarsh 
[ 12 ]) R-nullclinesNR, while class II neurons have inclined I-shaped NR ( e.g., 
FHN model). Since NV is essentially cubic, the number of intersections of NV 

and NR changes according to the level of I, and there appears a saddle-node 
bifurcation point for Connor neurons, or a homoclinic (saddle-node separatrix 
loop) bifurcation for the Morris-Lecar model (with appropriately chosen 
parameters). The salient property of class I neurons of Connor type is that as the 
injected current I traverses the saddle-node bifurcation point, there appears a  
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narrow channel between NV and NR. Rogawski [11] and Rose-Hindmarsh [12] 
emphasized that this is a consequence of the presence of A-current, i.e., a transient, 
slowly inactivating potassium current, an ion channel different from the 
Hodgkin-Huxley’s rectifying K+ current. 

  Our interest is in the study of a 
system-level behavior of gap 
junction–coupled neuron systems 
consisting of class I cells, rather 
than the dynamics of isolated single 
cells. In this respect, we define a 
neuron class, say I*, in a more 
abstract setting, in which (a part of) 
the class I neurons of Connor type 
are included [4].  

Let I* denote a subclass of class 
I neurons, in which there is a certain interval J of I (injected current) such that the 
following conditions hold simultaneously for I in J:  

1, there appears a narrow channel between NV and NR,  
2, there is a unique intersection of NV and NR which is unstable spiral,  
3, there exist orbits (with positive measure) reentering into the channel.  
We claim that class I* neurons, when coupled by gap junctions, exhibit 

extensive spatio-temporal chaos in some parameter regions [4]. Note that they 
show perfectly regular firings when isolated, hence this chaotic behavior is an 
emergent property of coupled systems.   

 
 
 
 

 
 
 
 

 
In the following, we show some numerical results showing time series of 

membrane potentials of three neurons among 10 by 10 neurons coupled by gap 
junctions with nearest 4 neighbors (Fig.1).  The injected current I is constant 
both in time and space. The maximum Lyapunov exponent is positive.  (Note: 
the gap junction couplings are assumed to be of linear diffusion type in this paper. 
See, [14].)     

Fig.2 (a), (b) show snapshots of membrane potential contours made by 80x80 
coupled neurons, with increasing gap junction conductance gGJ. This shows how 
robust the emerged spatio-temporal chaos is; it appears in a wide range of 
parameters near the saddle-node bifurcation points, and even for far larger 

Fig. 2 
Snapshots of contours of membrane potentials 
of GJ-coupled 80x80 class I* neurons.  
(a ) (top) 4-nearest neighbor couplings 
(ｂ) (below) 8-nearest neighbor couplings   
The gap junction strength gGJ  is, from left to 
right, 0.5, 1.5 and 3. 

Fig. 1.  

Time series of membrane potentials of 3 neurons 
from 10x10 gap junction-coupled class I* neurons. 
Coupling is among 4-nearest neighbors. 



injection currents if the coupling gGJ is smaller.  
 

3. Chaotic itinerancy among quasi-attractors which transiently exhibit 
synchrony states    
 

Chaotic itinerancy is addressed as a transitory and sometimes nonstationary 
dynamics. (I.Tsuda [16]-[18]). The dynamical orbits once approach one of 
"quasi-attractors" (or, "attractor ruins") and stay for sometime with a certain 
distribution, and escape there and approach to other ruins. This transitory 
dynamics continues without external perturbations. In chaotic itinerancy, a 
"quasi-attractor" can be defined by the attractor in the sense of Milnor [9] in 
which both topological and measure-theoretic concepts play role. The main 
characteristics of chaotic itinerancy are: (1) the presence of many near-zero 
Lyapunov exponents, (2) slow decay of correlations/ (mutual) information, (3) 
history (path)-dependent transition, (4) no ergodicity, (5) nonconvergence or an 
extremely slow convergence of near-zero and/or even the largest Lyapunov 
exponents in some case [13], [18], (6) the lack of attractor-tracing property as well 
as the lack of pseudo-orbit tracing property [12]. In fact, we generally observe in 
our numerical data the dimension gap, i.e., the Lyapunov dimension (which may 
approximate Haussdorf dimension of the chaotic attractor) is bigger than the 
topological dimension by more than one. This dimension gap stems from a large 
number of negative Lyapunov exponents with a small absolute value. This brings 
about distributed attractors in phase space. 

 
 
 
 
 
 
 
 

Figure 3 shows a contour map of time series of membrane potentials of the 
coupled class I* neurons. We observe metachronal waves which chaotically 
repeat creations and annihilations. (A metachronal wave is a wave produced by 
successive phase shifts of neighboring neurons’ activity like the movement of 
centipedes or cilium and flagella.) If a metachronal wave with a short time lag can 
be viewed as a synchronized state, Figure 3 and other examples of our numerical 
results may indicate the presence of transient synchrony - chaotic alteration of  
synchronized and desynchronized states; the alternation is chaotic both in its 

Fig. 3 Contour map of membrane potentials of 20 neurons of class I neurons coupled with 
the two neighbors by gap junctions.  The vertical and horizontal directions indicate 
respectively the neuron positions, and the time (0->250 msec). Each neuron receives a 
constant injected current without any external fluctuations.  No structural irregularity 
exists in this model.  



timing and spatio-temporal patterns. 
 

4.  Hypotheses –  LFP fluctuations and its transient synchrony/binding 
problem 

 
We proposed in this paper a theoretical possibility that gap junction-coupled 

interneuron systems consisting of class I* neurons may emerge a chaotic 
itinerancy itinerant among quasi-attractors, characterized as cell groups which 
dynamically show transitions between synchronized and desynchronized states.  
Along the line of this view, we shall propose new hypotheses on the 
physiologically observed data of cortical dynamics, the concept of dynamical cell 
assembly and the so-called binding problem. 

Our first proposal is expressed as the inhibitory chaotic field hypothesis, which 
says that the origin of the LFP fluctuations and stimulus-dependent transient 
synchrony, firstly observed and claimed by Gray [7] as the indicator of feature 
binding, is the itinerant chaos exhibited in gap junction-coupled interneuron 
systems consisting of class I* neurons.  It should be noted, however, that chaotic 
fluctuations of inhibitory interneurons, say of FS cells in cortical layers, are not 
directly reflected in LFP. Rather, the inhibitory influence of FS cells to pyramidal 
cells affects the fluctuations of membrane potentials of the latter (pyramidal) cells, 
and the consequences of which may be observed as transitory and synchrony 
dynamics of LFP, as observed by Gray. 

This may also lead us to another hypothesis that feature bindings may be 
established by joint itinerant dynamics of pyramidal and background FS cells.   

Although many questions, including whether cortical FS cells belong to class I* 
(even in an approximate sense) and so on, remain open, we hope that our 
proposals may provide a new scope for the study of neocortical dynamics and its 
cognitive role. 
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