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In contrast to the conventional static view of the brain, recent experimental data show that an
alternative view is necessary for an appropriate interpretation of its function. Some selected prob-
lems concerning the cortical transitory dynamics are discussed. For the first time, we propose five
scenarios for the appearance of chaotic itinerancy, which provides typical transitory dynamics.
Second, we describe the transitory behaviors that have been observed in human and animal brains.
Finally, we propose nine hypotheses on the functional roles of such dynamics, focusing on the
dynamics embedded in data and the dynamical interpretation of brain activity within the framework
of cerebral hermeneutics. © 2009 American Institute of Physics. �DOI: 10.1063/1.3076393�

The recent development of measurement techniques in
neuroscience has brought about many findings about
spatio-temporal dynamics of neural activity. These dy-
namics have been observed as, among other types of phe-
nomena, a coincidence of random spikes, as coherent ac-
tivity in neuron assemblies, as the nonstationary
transitions between synchronization and desynchroniza-
tion of oscillatory field potentials, as chaotic population
dynamics, as chaotic interspike intervals, i.e., chaotic
fluctuations of membrane potentials, as dynamically
switching cortical states. The complex spatio-temporal
changes of this mesoscopic-level activity has been ob-
served to be not merely random, but transitory dynamics
with some conspicuous features, such as, nonstationary,
repetitive, itinerant, and chaotic transitions. Focusing on
dynamic aspects of the brain, we have adopted the frame-
work of chaotic dynamical systems to interpret the func-
tions of dynamic neural activity emerging in the brain.
First, we propose five scenarios for the appearance of
chaotic itinerancy, which provides typical transitory dy-
namics. Second, based on the concepts of chaotic itiner-
ancy, Milnor attractors, and Cantor coding, we present
nine hypotheses on the formation of dynamic memory
and perception. These hypotheses may account for dy-
namic functional processes, such as, episodic memory
and the itinerant process of cognition. These hypotheses
also clarify the biological significance of the chaotic activ-
ity observed in the brain.

I. INTRODUCTION

During this decade, measurement techniques in neuro-
science have developed greatly, giving rise to many findings
about spatio-temporal dynamics of neural activity. However,
research interest still seems to be restricted to the act of
assigning a function to some specific areas based on the ob-
served activity of neurons or neural assemblies. Although it
is particularly important for clinical purposes to investigate
which parts of the brain are responsible for a certain specific
function, extracting an embedded dynamic order from the
extremely complicated behaviors of neural systems would be

much more important for the further development of brain
research. Here, we take the standpoint of focusing on the
dynamics of neural activity for an appropriate interpretation
of the corresponding function, taking into account the spatio-
temporal scales, called mesoscopic levels, that Walter Free-
man proposed to study.1

What are the spatio-temporal scales necessary for under-
standing brain dynamics and related functions? The theory of
phase transitions in physics tells us that ordered motion
emerged at a macroscopic level, and associated emergent
properties can be described as a collective motion of molecu-
lar behaviors at a microscopic level. Here, the collective mo-
tion is described by order parameters, which are decoupled
from individual molecular activity at a microscopic level.
Time scales are associated with spatial scales, so that motion
at a microscopic level is much faster than collective behav-
ior. This kind of theory was first developed within the frame-
work of equilibrium phase transitions and critical phenom-
ena, and has been extended to nonequilibrium systems by
using bifurcation theory via, for instance, the slaving mode
principle.2 These extended theories can be applicable to neu-
ral dynamics.3 In a neighborhood of the critical point, at
which the transition begins, a complex nonequilibrium mo-
tion appears, even in equilibrium systems. The spatial scale
of motion reaches over the entire scale of space, from micro-
scopic to macroscopic levels, where fractal patterns become
dominant. After the transition, the time scales can be consid-
ered as decoupled into two distinct components, one of
which represents a slow motion constituting an order param-
eter, and the other a fast motion that can be rounded off in an
averaging process. The averaged motion may appear as ei-
ther periodic or chaotic behavior. Does this scenario hold in
brain dynamics? It could be true if one focuses on a collec-
tive motion derived from the interactions of a large number
of elementary activity of neurons. It should, however, be
noted that spatial scales and time scales do not necessarily
match in brain dynamics. This brings about the possibility
that the time-dependent motion appears as an ordered motion
at a mesoscopic level, as well, which can be described by the
time evolution of order parameters. The time-dependent
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Ginzburg–Landau, which is usually abbreviated by TDGL,
type of equation provides such a typical description.

A far-from-equilibrium state can be realized by a steady
flow of energy or matter. In this sense, the brain can be
considered to operate as a far-from-equilibrium system.
Therefore, the activity of neural assemblies can be inter-
preted in terms of the dynamic states deriving from the in-
stability of far-from-equilibrium states. Ordered motion may
depend on time. It follows that the motion can be described
by a quantity, such as, a density function p, which will be a
function of time t, space x, and other physical quantities s.
For instance, such a quantity could be the membrane poten-
tial of a neuron v, or a calcium concentration u, where these
quantities depend on space and time, namely p�x ,s , t�
= p�x ,v�x , t� ,u�x , t� , t�. This gives a mesoscopic description
in this far-from-equilibrium system. It should be noted that
variables v and u may depend not only on macroscopic be-
haviors but also on the microscopic behavior of various types
of macromolecules and even genes via learning processes.
Another well-known mesoscopic description is provided by
the Navier–Stokes equation describing hydrodynamic flow.
In this respect, one of the key problems is how one can
obtain hydrodynamic limits for neural assemblies from a col-
lection of point neurons. From these considerations, the fol-
lowing proposition may hold.

Proposition 1: The brain dynamics measured by elec-
trode, optical recordings, magnetoencephalogram (MEG), or
electroencephalogram (EEG) represents the brain activity at
the mesoscopic level.

In this paper, by focusing on a certain typical dynamic
behavior of the brain, we assert that the transitory dynamics
can provide a mesoscopic-level description, which may lead
to the description of cognitive function. For the first time, we
propose five scenarios for the appearance of chaotic itiner-
ancy, which provides a typical transitory dynamics in high-
dimensional dynamical systems. Concerning the relation be-
tween cortical transitory dynamics and its cognitive function,
we propose nine hypotheses. The reliability of each hypoth-
esis is judged based on the accumulation of reliable experi-
mental data and on the plausibility of interpretation. Accord-
ing to the level of reliability of each hypothesis, we assign a
number of asterisks. The larger the number of asterisks, the
more reliable the hypothesis, with the largest number
being 3.

II. CHAOTIC ITINERANCY AS A TRANSITORY
DYNAMICS AT THE MESOSCOPIC LEVEL

The complex spatio-temporal changes of mesoscopic-
level activity have been observed to be not merely random,
but transitory dynamics with some conspicuous features,
such as, nonstationary, repetitive, and chaotic transitions.
Typical phenomena observed in laboratories are chaotic tran-
sitions between “quasiattractors,”4,5,1,6 irregular transitions
between synchronization and desynchronization of sub-
threshold dynamics in the cat visual cortex,7 irregular re-
entry of synchronization of phase differences in human
EEG,8 and the task-related propagation of wave packets con-
sisting of �-waves with around 30–90 Hz oscillations and

�-waves with around 10–30 Hz oscillations.9,10 A common
feature of these phenomena is that the transition appears to
be “chaotic” and “itinerant.”

Furthermore, experimental evidence on spontaneous cor-
tical activity or ongoing activity has accumulated recently.
For instance, Kenet et al. showed that ongoing activity con-
tains a set of dynamically switching cortical states in V1.11

They suggested that dynamically switching cortical states
may reflect expectations about the sensory inputs. A theoret-
ical investigation on this V1 activity has been published.12 It
has also been suggested that spontaneous cortical activity
appears in accordance with wandering mental process due to
the activation of default networks.13

Despite these findings concerning “nonstationary” tran-
sitions, it is misleading that brain activity has been described
as a relaxation process to an equilibrium state. In fact, the
brain dynamics seems to act at a mesoscopic level in far-
from-equilibrium conditions. Furthermore, another mislead-
ing theory in conventional brain theory is the theory based
on the description of nonstationary and transitory processes
by a geometric attractor. Although a theory for associative
memories developed by Kohonen, Anderson, Amari,
Hopfield, and others,14,15 and also a theory of neural net-
works based on the attractor dynamics developed by Amari,
Hirsch, Hopfield, Amit, and others15–18 played a decisively
important role in clarifying the direction of theoretical stud-
ies for cognitive functions of the brain, it is apparently in-
correct to use these theories for the transitory phenomena
mentioned above. Establishing a theory for the observed
transitory dynamics and its related cognitive functions, on
the other hand, has attracted attention. In this context, we
have proposed a theory that those complex phenomena can
be interpreted in terms of chaotic itinerancy,19–23 which can
describe a typical transitory dynamics in high-dimensional
dynamical systems.24,27,28 Rabinovich and co-workers have
also studied dynamical systems which account for cortical
transient phenomena, based on the experimental data of neu-
ronal dynamics for olfactory information processing in
insects.29,30 They have proposed a heteroclinic linking of
saddle points or cycles for representation of the transient
motion.

One can describe various dynamical states in far-from-
equilibrium systems in terms of the concept of attractors in
dynamical systems. The steady state is described by a fixed
point, the periodic state by a limit cycle, the quasiperiodic
state by a torus, and the irregular state by a strange attractor.
The fact that a neural network can yield chaotic behaviors
has been pointed out by Freeman,1,4–6 Sompolinsky,31,32

Tsuda,33 Körner,34 Aihara,35 Arecchi,36 and others. The roles
for chaos in the brain have also been widely studied by
Nicolis,37,38 Tsuda,39,24,40 Freeman,4,1,6 Skarda,5 Kay,9,10 and
recently by many others.

A transitory dynamics cannot be explained by these geo-
metric attractors because the transition should be associated
with the instability of such a state itself. We have
proposed19–22 the phenomenological concept of “chaotic itin-
erancy” as what expresses the chaotic transitions between
“attractor ruins,” in a neighborhood of which the dynamical
orbits experience stagnant motion. In other words, the orbits
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behave as if there exist attractors, in the sense that the orbits
of positive measure are attracted to those areas after a certain
length of time. However, such an attracted area is not asymp-
totically stable. In this case, we called it an “attractor
ruin,”19–21 or sometimes use the term “quasiattractor.”24,25

Using this term, the transitory process can be expressed as a
chaotic transition between attractor ruins. Chaotic itinerancy
has been found in many systems.26 Typical systems include
globally coupled maps �GCM�,20 coupled map lattices
�CML�,41,42 networks of neuron maps,43 coupled differential
equations �CDE�,28,44,45 delay-differential equations
�DDE�,19 and skew product transformations �SPT�.22,33

Characteristics of chaotic itinerancy have also been
clarified. The distribution of the residence time of the stag-
nant motion follows a power law22 or an exponential law.42

The chaotic transition usually occurs in high-dimensional
phase space, but, for the case where chaotic orbits are con-
fined in a “narrow tube”-like structure, the main component
of transition can be described by low-dimensional chaos.46,33

The Lyapunov spectrum has the following three specific
characteristics. �1� Many of the Lyapunov exponents accu-
mulate in a neighborhood of zero.20,22 �2� The zero expo-
nents besides the direction of orbit �in the case of flow� show
large fluctuations and do not converge.47 �3� Even the largest
exponent fluctuates, and shows extremely slow
convergence.42 In this respect, concepts, such as, partial
hyperbolicity,48 nonhyperbolicity,49 and normally hyperbolic
invariant manifolds,51,52 have attracted attention.

III. GEOMETRIC ATTRACTORS
AND MILNOR ATTRACTORS

An attractor ruin cannot be expressed as a geometric
attractor, because a dynamical mechanism must allow transi-
tions between attractor ruins.

One possible mechanism is provided by the use of a
Milnor attractor.53 A Milnor attractor was defined by John
Milnor to extend the attractor concept to allow an �-limit set
as an attractor if it has a positive measure for its basin. In the
following, we give definitions for both a geometric attractor
and a Milnor attractor.55,53

Definition 1 (geometric attractor): Let M be a compact
smooth manifold. Let f :M→M be a continuous map on M.
A trapping region is defined as a subset N of M that satisfies
f�N�� inter�N�, where inter�N� is an interior of N. For a
trapping region N of M, such as, this, A=�n=0

� f �n��N� defines
an attracting set. A geometric attractor is a minimal attracting
set. In other words, an attracting set satisfying topological
transitivity is a geometric attractor, simply called an attractor.

A Milnor attractor is an extension of the concept of at-
tractor, whereby a Milnor attractor contains a geometric at-
tractor.

Definition 2 (Milnor attractor): Let M be a phase space,
and B a set. A basinlike region of B is defined as ��B�
= �x ���x�=B ,x�M�, where ��x� denotes a �-limit set of x.
A Milnor attractor is defined as a set B satisfying the follow-
ing two conditions:

1. ����B���0, where � is a measure equivalent to the
Lesbeque measure.

2. There is no true subset B� of B such that
����B� \��B���=0.

The condition for a geometric attractor, by which all
orbits in a neighborhood of an attractor should be absorbed
to the attractor, is not necessarily demanded by the condition
for a Milnor attractor. A positive measure of orbits approach-
ing an attractor is necessary. This implies that there could be
an orbit leaving an attractor. Therefore, a geometric attractor
is a Milnor attractor, but not vice versa. However, in this
paper, we will use the term “Milnor attractor” in its narrow
sense, i.e., as an attractor characterized by neutral stability. In
other words, a Milnor attractor here possesses a positive
measure of both attracting orbits and repelling orbits. In this
narrow sense, dynamics in a neighborhood of a Milnor at-
tractor are described by higher-order terms than the linear
term. For example, in one-dimensional flow dynamics, an
evolution equation in a neighborhood of a Milnor attractor
can be described by dx /dt=ax2+o�x2�, where x denotes a
deviation from a Milnor attractor, o�x2� indicates smaller
terms than x2, and a is a positive constant. It is noted that a
similar equation holds also for one-dimensional maps. There-
fore, in the case of multiple Milnor attractors, each Milnor
attractor is placed on its basin boundary.54

IV. POSSIBLE SCENARIOS
FOR CHAOTIC ITINERANCY

Is there a mathematical concept that correctly represents
an attractor ruin? Previously, we have proposed possible
scenarios.27 Here, we treat this issue as an extension of these
previous theories.

Scenario 1: A three-tuple (chaotic invariant set, Milnor
attractors, riddled basins) yields chaotic transitions between
attractor ruins.

It is apparent that any transition from a Milnor attractor
is impossible without external perturbations because it is an
invariant set. External perturbations can be provided by in-
teractions with other systems, and also by external noise.
Here, for the first time, we take the GCM into account, as a
typical example showing chaotic itinerancy. Then we show
that a Milnor attractor associated with a riddled basin57

brings about chaotic itinerancy.
A GCM is defined as follows: For a one-dimensional

map g�i� :R→R for 1� i�N, G :RN→RN, xn+1=G�xn� is de-
termined by the relation

xn+1
�i� = �1 − 	�g�i��xn

�i�� +
	

�N − 1��j�i

g�j��xn
�j�� �1 � i � N� ,

�1�

where n is a discrete time, i , j are indices of the map, and N
is the number of individual elementary maps.

Kaneko first investigated the case of g�i� being identical
logistic maps that produces chaos, and numerically found
chaotic itinerancy.56

A GCM is invariant under the substitution s of individual
elementary maps. In other words, a group action s commutes
with a dynamical rule h, i.e., hs=sh. In this sense, a GCM
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can be called a symmetric system. This type of symmetric
system has been widely studied by Ashwin, Breakspear, and
others.58–60

Proposition 2: In a symmetric dynamical system, �M ,h�,
an invariant set under a group action is also invariant for the
development of the dynamical system.55

The proof is straightforward. Let A�s� be an invariant set
under a group action s, i.e., A�s�= �x �sx=x ,x�M�. For x
�A�s�, because sx=x, h�sx�=h�x� holds. By the assumption
of symmetry, s�hx�=h�sx�, and therefore s�hx�=h�x� follows.
This means that h�x� is invariant under the group action s.
Therefore, h�x��A�s�. In other words, A�s� is also invariant
under h.

When h produces chaos, a synchronization state of all
elementary individual maps is realized by a one-dimensional
chaotic set, which is invariant under any substitution of el-
ementary individual maps. Therefore, by proposition 2, the
all-synchronized state must be invariant under dynamical de-
velopment, which is denoted here by H1. In the present
GCM, there are many other invariant sets representing par-
tially synchronized states. For example, two different syn-
chronized states can appear: one state caused by the synchro-
nization of N1 individual maps among N, and the other state
caused by the synchronization of the residual N−N1 maps.
These two synchronized states construct a two-dimensional
invariant subspace H2. Now, assume that a partially synchro-
nized state is stable and represented by a geometric attractor.
If the Lyapunov exponent that is normal to H1 is positive, H1

is unstable in a normal direction. There is no contradiction
here. If the sign of the normal Lyapunov exponent of H1

changes from positive to negative values via a blowout
bifurcation,61 and if this bifurcation is local, then the basin of
attraction of chaos representing the all-synchronized state be-
comes riddled. Therefore, the chaotic invariant set becomes a
Milnor attractor. Because we assume that a normal Lyapunov
exponent to H2 remains negative because of the locality of
the blowout bifurcation, a similar situation happens in a
neighborhood of H2. If the partially synchronized state is
chaotic, its basin of attraction may also become riddled.63

When orbits approach an all-synchronized state along its
stable manifolds, the orbits begin to behave chaotically via
the influence of the chaotic invariant set. While wandering
chaotically in a neighborhood of such a set, the orbits meet
repelling orbits. Then the orbits begin to leave a neighbor-
hood of the all-synchronized state. A similar situation can
happen in a neighborhood of a partially synchronized state.
Therefore, such states look like attractor ruins mentioned
above. One realization of such a ruin may be a chaotic
saddle.62

Related simpler cases have been described as on-off
intermittency,64,65 and as in-out intermittency.66 On-off inter-
mittency is an intermittency such that an invariant set, which
may represent the all-synchronized state, is a single attractor,
whereas, for in-out intermittency, such an invariant set in-
cludes plural attractors and/or repellers. It was pointed out by
Ott61 that the riddled basin accompanies on-off intermittency,
and by Ashwin66 that, for the case of in-out intermittency, the
basin of attraction of a chaotic invariant set can become

riddled, but that it is an open set for the basin of attraction of
a periodic orbit or a fixed point.

Scenario 2: The interacting fixed point type of Milnor
attractors can yield chaotic transitions between tori or local
chaotic attractors.

For scenario 1, the fact that an all-synchronized state is
chaotic is a cause of chaotic transition between partially syn-
chronized states. It would be interesting to investigate
whether such a chaotic transition can occur when an all-
synchronized state is represented by a fixed-point attractor in
a Milnor’s sense, which is different from the case for the
above GCM. We have investigated whether or not a coupled
map system under this condition can produce chaotic
itinerancy.42 The above scenario does not hold for a set of
fixed-point Milnor attractors, because the basin of attraction
of the fixed point must be an open set. In fact, we did not
observe any itinerant transition from those fixed-point Mil-
nor attractors. What we actually observed was chaotic tran-
sitions between tori and chaos yielded by the interactions of
fixed-point Milnor attractors, whose transitions were associ-
ated with a riddled basin, where chaotic transitions occur via
crisis-induced chaos.

Scenario 3: A heterodimenional cycle may produce cha-
otic itinerancy.

Under a similar symmetry, the saddle connections can be
robust, as Guckenheimer and Holmes67 proved. This holds
under the condition that the sum of the dimensions of the
unstable manifolds of one saddle and the stable manifolds of
the other one exceeds the dimension of phase space, pro-
vided that the sum of the dimensions and the space dimen-
sion can be equal in the case of vector fields. In each invari-
ant subspace of symmetric dynamical systems, we can
confirm this condition. In fact, heteroclinic cycles can be
realized in some neural systems.29 However, with this kind
of stabilization condition only, chaotic transitions cannot be
expected. What is a mechanism for allowing chaotic transi-
tions, based on the saddle connections?

For simplicity, here we treat the case of a saddle connec-
tion between two saddles. Let us denote the saddles by S1

and S2. Now suppose that an unstable manifold of S1 con-
tacts a stable manifold of S2. The orbit starting from S2 may
construct a heteroclinic orbit connecting to S1, but this
should not be robust, for the following reason. The fact that
the sum of the dimension n1

u of the unstable manifold of S1

and the dimension n2
s of the stable manifold of S2 exceeds the

space dimension N, i.e., n1
u+n2

s �N, indicates that �N−n1
u�

+ �N−n2
s�
N. The latter inequality means that the sum of the

dimensions of the stable manifold of S1 and the unstable
manifold of S2 cannot exceed the space dimension. The un-
stable manifold of S1 contacts the stable manifold of S2 via
an n1

u+n2
s −N-dimensional surface. However, the stable mani-

fold of S1 and the unstable manifold of S2 cannot contact
each other. Therefore, in each neighborhood of two ho-
moclinic orbits, homoclinic chaos appears, i.e., the Shilnikov
phenomenon, if the orbits are not restricted to some addi-
tional invariant space that reduces the effective dimensional-
ity. However, this condition cannot lead to a transition, such
as, chaotic itinerancy.
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Let us further consider a heterodimensional cycle.68,69 A
diffeomorphism f has a heterodimensional cycle associated
with two saddles S1 and S2 of f if the saddles have different
indices, i.e., different dimensions of those unstable manifolds
n1

u�n2
u. A co-index 1 cycle is a heterodimensional cycle with

n1
u=n2

u�1. A heterodimensional cycle is not robust for the
above reason. However, Bonatti and Diaz proved the follow-
ing theorem.

Theorem 1: �Bonatti and Diaz� Let f be a
C1-diffeomorphism having a co-index 1 cycle associated
with a pair of saddles. Then there are diffeomorphisms arbi-
trarily C1-close to f that have robust heterodimensional co-
index 1 cycles.

By the following theorem, in a neighborhood of a dif-
feomorphism with a co-index 1 cycle, chaotic behaviors are
expected.

Theorem 2: �Bonatti and Diaz� Let f be a diffeomor-
phism with a co-index 1 cycle that has real central eigenval-
ues. Then there are diffeomorphisms arbitrarily C1-close to f
that have strong homoclinic intersections associated with
saddle-node or with flips.

In this case, we expect transitory behaviors, such as,
chaotic itinerancy because of the presence of heteroclinic
intersections and the possibility of the appearance of stag-
nant motion in a neighborhood of heteroclinic tangency.
However, further studies are necessary to confirm this
assertion.

Furthermore, one may discuss the relation of the appear-
ance of chaotic itinerancy to heteroclinic cycles. It may be
interesting to note the memory capacity of networks of com-
peting neuron groups. Rabinovich et al. estimated it at ap-
proximately e�N−1�!, where N is the number of neurons,
calculating the possible numbers of heteroclinic cycles.29 On
the other hand, to calculate the critical dimensionality of the
appearance of chaotic itinerancy, Kaneko50 estimated two
factors that are supposed to determine the dimensionality for
the chaotic transition. Let N� be the system’s dimension. Let
us assume that the number of states in each dimension is
two, taking into account the presence of two stable states
separated by a saddle. The number of admissible orbits cy-
clically connecting the subspaces, using, say heteroclinic
cycles, increases in proportion to �N�−1�!, whereas the num-
ber of states increases in proportion to 2N�. If the former
number exceeds the latter, then all orbits cannot necessarily
be assigned to each of the states, hence causing the transi-
tions. In this situation, we expect itinerant motions between
states. This critical number is six for chaotic itinerancy.50,26

We identify N� with N. In such a case, one may conclude that
the transition via heteroclinic cycles appears when the
memory capacity is less than the number of states, whereas
chaotic itinerancy appears in the opposite condition.

Scenario 4: A normally hyperbolic invariant manifold
(NHIM)51 can yield chaotic itinerancy.

A NHIM is an extended saddle of high-dimension such
that the normal Lyapunov exponents to an invariant manifold
are greater than the tangential ones in such a manifold. Ko-
matsuzaki and Toda insisted that a NHIM provides a mecha-
nism for chaotic itinerancy.52 This is because, in a neighbor-

hood of a NHIM, one can expect stagnant motion, and the
motion in a NHIM can be chaotic.

Scenario 5: Milnor attractors associated with fractal
basin boundaries may yield noise-induced chaotic itinerancy.

In a symmetric dynamical system, the appearance of a
negative Lyapunov exponent in the direction normal to the
chaotic invariant set was essential for the transition, but it
has been pointed out that the presence of positive normal
Lyapunov exponents still brings about a curious transition
phenomenon.70 It is known that fractal basin boundaries
separate multiple attractors.70 Feudel et al. found a chaotic
itinerancy-like phenomenon in a double-rotor system with
weak noise.70 In this system, many periodic orbits coexist,
together with higher periodic orbits possessing very tiny ba-
sins, which may disappear under the influence of noise, leav-
ing only low periodic orbits. Similar behavior was found in
the KIII model by Kozma and Freeman,71 where, because of
fractal basin boundaries, long chaotic transients appear be-
fore the system falls into a periodic orbit. Orbits are trapped
for some time in the vicinity of periodic attractors, but are
eventually kicked out by noise, following which the orbits
become chaotic again because of the fractality of the basin
boundary. Consequently, chaotic transitions between periodic
attractors occur, possessing a statistics of residence time in a
neighborhood of periodic orbits. This is noise-induced cha-
otic itinerancy. Noise-induced chaotic itinerancy can occur
even with the fixed-point Milnor attractors. This type of cha-
otic transition is not purely random, even with the addition of
uniform white noise, but rather ordered, being caused
by the original topology in a neighborhood of such fixed
points.70,22,33

V. ON THE ROLE OF STATE TRANSITIONS
IN THE BRAIN

A. Cortical spontaneous activity

What are the functional roles of dynamic transitions in
the brain? It has been believed that the brain responds to
stimuli only when the stimuli are actually presented. How-
ever, recent observations with fine precision in both space
and time show that this is not necessarily true. Spontaneous
activity of the brain has been measured via field potentials
and electrocorticogram. The brain changes its activity in the
absence of stimuli such that the spontaneously activated pat-
tern or ongoing activity is similar to what would appear if the
stimulus were actually presented. Consequently, spontaneous
activity of the brain shows continual spontaneous transitions
between specific patterns.11–13,8 This finding may indicate
that the brain is always in an active idling state, with possible
responsive patterns being evocated to enable quick responses
to any stimuli.

Other kinds of spontaneous activity have also been ob-
served. Freeman and Zhai observed spontaneous activity of
animal and human brains,72 and conducted a data analysis in
terms of a random number moderated by refractory periods.
They found that the spontaneous activity can be character-
ized by black noise, whose power spectrum density follows
1 / fx, where x�2. The appearance of black noise activity
means that extremely rare events predominate. Another
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spontaneous transition between neural states has been ob-
served in the culture of hippocampal CA3 neural networks.73

This has been observed in the presence of much carbachol,
which is an agonist to muscarinic acetylcholine receptors.
The transition occurred among random firing states, up-down
states, steady firing states, 
 rhythm activity, and partially
synchronized states. In place of carbachol, the input of atro-
pin, which is an antagonist to muscarinic acetylcholine re-
ceptors, prohibited the transition and had a strong tendency
to force the network to a single state among the above five
kinds of states, depending on the initial conditions. The find-
ing of this spontaneous transition in CA3 with the activation
of muscarinic acetylcholine receptors is important because
hippocampal CA3 can be considered as playing a role in the
internal reconstruction of episodes.

Furthermore, brain activity during the performance of a
task also shows transitions. Kay proved the existence of state
transitions in the field potentials of a rat’s brain during suc-
cessive periods of anticipation of odor inputs, perception of
odor, judgment for action, and actual action.9,10 The transi-
tions were found over wide areas that include the olfactory
bulb, the olfactory cortex, the hippocampus, and the entohri-
nal cortex. Several types of wave propagations, associated
with top-down and bottom-up processes, were observed by
simultaneous recordings in those areas. The state transitions
express the representation of the animal’s experience, i.e.,
episode.

All of these findings may be related to the formation of
episodic memory, because the neural representation of epi-
sodes will be regenerated in both the neocortex and the lim-
bic system during a rehearsal of a response. In the following
subsection, we propose hypotheses about the role of the hip-
pocampus, after a brief review of the research on the activity
of the hippocampal CA3 and memory.

B. Representation of episodic memory

From clinical studies of H.M.74 and later those of R.B.,75

it has been clarified that the hippocampus and related areas
are responsible for the formation of episodic memory.
Among others, the function of the neural network in CA3 has
been highlighted since Marr’s study of simple memory.76

Marr considered that the CA3 network provides a mecha-
nism for the representation of associative memory, because it
possesses massive recurrent connections. In fact, a network
of excitatory pyramidal neurons with recurrent connections
has been observed in the hippocampal CA3 and the
neocortex.77,78

Mathematical studies of recurrent networks in relation
to associative memory have been developed.16,14 Now
suppose that a recurrent network consists of n excitatory
neurons, called pyramidal neurons. The ith neuron’s
activity at time t is denoted by xi�t�. We assume that
each neuron’s activity is updated by the formula
f�� j=1

n wijxj�t�+other inputs−threshold�, where f is a sigmoid
function expressed by a function, such as, tanh�x�. Let us
denote by xi

�k� the activity of a pyramidal neuron i for the kth
memory pattern. In the conventional model of associative
memory, if the Hebbian learning algorithm is adopted, geo-

metric attractors can be formed in phase space, each of
which is assumed to represent a memory pattern x�k�,15 where
x�k�= �x1

�k� ,x2
�k� , . . . ,xn

�k�� is a vector representing a network ac-
tivity for a memory k. Here, the Hebbian learning algorithm
is given by the formula of synaptic connections, wij

=�k=1
m xi

�k�xj
�k�, where m is the number of memories. Memory

patterns are naturally assigned by random numbers, and the
network can therefore be interpreted in terms of spin
glasses.15 This type of network can provide a model for as-
sociative memory. The relaxation process to an attractor im-
plies a retrieval process of memory. In the neocortex and the
hippocampus, however, in addition to the recurrent connec-
tions of excitatory pyramidal neurons, inhibitory neurons are
considered as playing an important role.77,78 Although the
detailed topology of the network comprising both excitatory
and inhibitory neurons is still unknown, it is likely that tens
to hundreds of inhibitory neurons are associated with each
pyramidal neuron.

A question then arises. What is the role of such inhibi-
tory neurons in associative memory? Assuming the presence
of negative feedback to each pyramidal neuron by inhibitory
neurons, the input of the kth memory pattern changes the
argument of the sigmoid function for a neuron i from
� j=1

n wijxj
�k�=xi

�k� to � j=1
n wijxj

�k�−cxi
�k�= �1−c�xi

�k�, where c is
the effective synaptic strength of the inhibitory neurons to
the corresponding pyramidal neuron, and takes a positive
value. For a positive region of the argument, such a reduction
of the argument brings about the decrease in the error reduc-
tion by the sigmoid transformation, which may lead to a
decrease in the stability of the attractor. In fact, we have
conducted numerical simulations of the recurrent networks
of pyramidal neurons associated with inhibitory neurons, and
we found that a signal from inhibitory neurons can reduce
the stability of geometric attractors, if it is introduced as a
feedback inhibition. We also found that inhibitory signals
make the stability of attractors neutral.33,34,22,24 This critical
stage of reduction allows the appearance of Milnor attractors.

Because the model was constructed such that only the
current state of the network is inhibited, once the current
state deviates from a memory state, the memory state previ-
ously retrieved can no longer be inhibited and recover its
stability. Let us assume the existence of multiple geometric
attractors at the initial stage of the network, each of which
represents a memory. By the effect of inhibition, the current
state is inhibited, but the network state continually changes,
provided it is not an attractor. Then, the network state ap-
proaches one of the attractors. Once the state becomes an
attractor state, the current state remains an attractor until the
state is changed by sufficient feedback inhibition effects.
Therefore, a memory state continues to be inhibited until it
becomes a neutral state. This neutral state can be represented
by a Milnor attractor. If interactions from other networks are
then sufficiently effective as to change the neutral stability of
the attractor, or a slight external noise is added, the network
changes the current state, and a transition from one attractor
to another will be expected. Once the transition begins, the
memory state can again be represented by a geometric attrac-
tor, because such a memory state is no longer the object to be
inhibited.
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How similar are the network structures of the neocortex
and the hippocampal CA3? This may stem from biological
evolution. The large-cell layers of reptiles developed into the
pyramidal cell layers of both the neocortex and the hippoc-
ampus in mammals, and the small-cell layers of reptiles de-
veloped to the granule cell layers of the dentate gyrus in
mammals.79 The main difference between the neocortex and
the hippocampal CA3 comes from the presence of disinhibi-
tory connections from the septal inhibitory neurons to the
inhibitory neurons in CA3.80,81 This is known as a disinhibi-
tory circuit.82–84 Disinhibitions from the septum to the hip-
pocampus are input almost periodically, being synchronized
with 
-rhythms. On the other hand, 
-rhythms are often ob-
served in the hippocampus of animals during searching
tasks.84 Therefore, during a recall of episodes, in the hippoc-
ampal CA3, the states of geometric attractor and of Milnor
attractor can alternate almost periodically, being associated
with the periods of 
-waves. We have numerically observed
noise-induced chaotic itinerancy based on the appearance of
a fixed-point Milnor attractor, in a model of CA3.24,85,86

We now propose the following nine hypotheses:
Hypothesis 1*

A memory represented by a geometric attractor in a
learning process is represented by a Milnor attractor in a
retrieval process. This is caused by the participation of in-
hibitory neurons in the process.

Hypothesis 2**

The linking process of memories is realized by chaotic
activity of the network.

Hypothesis 3**

Chaotic itinerancy provides a neural representation of
an episode.

However, the following issue should be considered. For
the formation of episodic memory, the mechanism for creat-
ing the memory of a time series is necessary, but a single
CA3 is not sufficient for this mechanism, although CA3 can
yield a time series linking Milnor attractors, as mentioned
above. From a mathematical point of view, the distance be-
tween patterns can be measured in CA3 by, for instance, the
inner product of pattern vectors. It is, however, unlikely that
CA3 can define the distance between time series if the Heb-
bian learning algorithm is used, unless the rule for ordering
the patterns is given in advance. On the other hand, Cantor
sets can naturally be yielded in CA1,86,24 each subset of
which represents the time series of finite length that is sup-
posed to be produced from CA3. The distance between the
time series of �in�finite length can be measured by a Hauss-
dorf distance between subsets of Cantor sets. Therefore, if
episodes are expressed as time series of events reproduced
by CA3, episodic memory can be encoded by Cantor sets in
CA1. Buszaki found that the GABAergic inhibitory neurons
in the septum inhibits the GABAergic inhibitory neurons in
the hippocampus, in synchronization with 
-rhythms, namely
oscillations at 5–8 Hz.80 Based on this finding, we propose
the following hypothesis:

Hypothesis 4***

Disinhibition from the septum to the hippocampus brings
about the appearance of attractor dynamics in the hippoc-
ampal CA3 if the Hebbian learning algorithm is adopted,

because the network effectively becomes a recurrent network
of excitatory pyramidal neurons. On the other hand, in the
period that this disinhibition is cut off, the overall dynamics
in CA3 becomes transitory, because of the instability of the
memory space by the operation of inherent inhibitory neu-
rons in CA3. Therefore, the association of one memory rep-
resentation to another can be repeated in an almost cyclic
way, with each appearing approximately every 200 ms.

Furthermore, as for the process of addition of new
memories, we propose the following hypothesis:

Hypothesis 5*

When a new pattern is learned, attractor dynamics op-
erate, which allows the representation by a geometric attrac-
tor for a learned pattern. After the linking process between
memories that include a new memory is strengthened, each
elementary memory is represented by a Milnor attractor.

How is the output time series of CA3 represented in
CA1? Taking into account the fact that a main direct connec-
tion from CA3 to CA1 is unidirectional via the Schaffer col-
laterals of pyramidal neurons in CA3 and the fact that CA1
dynamics can be contractive, we may suppose that an overall
activity of CA1 obeys contractive dynamics driven by cha-
otic dynamics. We have investigated an abstract CA1 model
and derived the Cantor coding.86 At the next stage of the
study, to investigate the biological plausibility of this idea of
Cantor coding, we investigated a biology-oriented model that
represented the physiological neural networks of CA3 and
CA1.87 To model a single neuron, we used the two-
compartment model proposed by Pinsky and Rinzel,88 which
produces quite similar dynamics to the membrane potentials
of an actual hippocampal neuron. In both subthreshold and
superthreshold dynamics, we found Cantor sets in the mem-
brane potentials of the model CA1 pyramidal neurons. In the
biology-oriented model, we found a set of contractive affine
transformations, which produces hierarchically ordered pat-
terns of membrane potentials that can be represented by Can-
tor sets.87 This means that the dynamics in terms of an iter-
ated function system �IFS�89–92 emerges through the network
self-organization, thereby producing Cantor sets for the cod-
ing of input time series. Furthermore, the membrane poten-
tials for the model CA1 neurons obey a bimodal distribution
whose minimum corresponds to the neuron’s threshold. This
result may indicate the possibility of decoding the informa-
tion embedded into Cantor sets by means of a pulse train
output of pyramidal cells.87

To verify these predictions, we conducted an experiment,
using rat hippocampal slices. Random time series of spatial
patterns were input to the Shaffer collaterals of pyramidal
cells in CA3, with these collaterals making synaptic contacts
with pyramidal cells in CA1. We obtained a hierarchical
clustering for the membrane potentials of a CA1 neuron,
which may indicate the production of Cantor-type patterns in
CA1 neurons.93 We also obtained a return map whenever
each elementary pattern in the time series appeared, and then
found affine transformations, which appeared to be contrac-
tive for most data sets.94

The following hypotheses for CA1 dynamics are pro-
posed:
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Hypothesis 6***

Episodic memories are encoded in the Cantor sets pro-
duced by affine transformations that emerge in the CA1 net-
work.

Hypothesis 7**

Episodic memories are decoded in CA1 outputs as neu-
ral pulse trains.

C. Dynamical systems interpretation of the transition
between synchronization and desynchronization

Among the data measured at mesoscopic levels, a seem-
ingly random transition between synchronization and desyn-
chroniztion of neuronal activity is often observed. Some data
show the reentry of synchronization at subthreshold activity.7

We made a mathematical model to elucidate a mechanism
for this synchronization phenomenon, finding chaotic itiner-
ancy in the process of reentry of synchronization. Let us
briefly discuss this issue.

In addition to the class II neuron, which is typically de-
scribed by the Hodgkin–Huxley �H-H� model, a neuron
called a class I neuron is also well known.95 The H-H model
is reduced to the two-dimensional phase space, which is
known to be a FitzHugh–Nagumo �F-N� model. Recently,
many class I neurons have been found also in the higher
mammalian brains. In addition to the Na+ and K+ channels
adopted in the class II neurons, the class I neurons possess
transient potassium channels. By the addition of this channel,
the class I neuron has a saddle-node bifurcation as well as a
Hopf bifurcation, whereas the class II neuron is typically
characterized by a subcritical Hopf bifurcation.

Furthermore, it was recently found that the gap junction-
coupled inhibitory neurons are ubiquitous even in the mam-
malian neocortex. The inhibitory neurons involved in such a
network inhibit a pyramidal neuron via their chemical syn-
apses. Therefore, as the first step in the study of these net-
work dynamics, our concern was about the activity of the
gap junction-coupled network of class I neurons. To investi-
gate this problem, it is convenient to use a subclass of the
class I neurons, called the class I* neurons. A class I* neuron
is represented by a vector field on R2, and is distinguished
from others by the following characteristics.28,45

Definition of class I� neurons
1. The existence of a family of limit cycles possessing a

period that becomes infinity at the saddle-node bifurcation
point.

2. The existence of a narrow region between two
nullclines.

3. The existence of an unstable spiral inside the closed
orbit described in 1.

We have studied its gap junction-coupled network.28,44,45

A gap junction can be modeled by nearest-neighbor diffusive
couplings.96 For the gap junction-coupled class II neurons, a
spiral pattern and a transmission of a pulse front are typical,
whereas, for the gap junction-coupled class I* neurons, a
transition between synchronization and desynchronization is
observed in rather wide parameter ranges. Furthermore, this
transition looks chaotic, and therefore it seems to be inter-
preted as chaotic itinerancy between synchronization and de-
synchronization. However, detailed investigations led us to a

different result. This dynamical system includes a complex
structure of Milnor attractors. Dynamical states as compo-
nents of the transition phenomenon consist of different
states, such as, an all-synchronized state, a symmetric
metachronal wave, a phase turbulence connecting these two
states, and fully developed chaos appearing via a crisis. Here,
a metachronal wave means a wave comprising oscillations
whose phases monotonically shift in space. An all-
synchronized state, a symmetric metachronal wave, and a
phase turbulence exist in an invariant subspace HM with a
mirror symmetry. Interestingly, it was numerically shown
that a complex of these three states can be a Milnor attractor.
A transversal Lyapunov exponent to this subspace was also
calculated. The following hypothesis is obtained from these
model studies:

Hypothesis 8**

An irregular and nonstationary transition between syn-
chronization and desynchronization observed in a local field
potential of the mammalian brain is interpreted as chaotic
itinerancy between fully developed chaos and a Milnor at-
tractor, the latter possibly comprising substates with a cer-
tain kind of symmetry.

D. Itinerancy of signature and retrieval
of memories by an excitatory GABA

One of the striking findings in contemporary brain sci-
ences must be the excitatory GABA. Hiroshi Fujii gave an
interesting scenario for the role of an excitatory GABA.97 We
provide a brief sketch of this scenario here.

There are two ways that an excitatory GABA may ap-
pear. One is that it is excitatory in an early period of postna-
tal development, and the other is that it is excitatory even for
an adult brain. Certain hypotheses have been proposed for its
mechanism, but this is still in dispute. As mentioned above,
the presence of inhibition in a space of associative memory
can trigger an organization of a successive association of
memories, and the absence of inhibition or the presence of
disinhibition may realize a single association of memory,
which then fixes the memory state. Therefore, it can be sug-
gested that a switch between excitation and inhibition of
GABA in a certain time scale may give rise to an alternation
of stable and unstable dynamics in the retrieval process of
memories.

Hypothesis 9*

GABAergic neurons work in the processes of both stor-
age and retrieval of memories in the cerebral neocortex. In
the early period after the input of stimuli, during which
GABA can be inhibitory, an unstable dynamics is dominant
and a successive association of memories therefore occurs
via chaotic itinerancy. In the second stage, during which
GABA may be excitatory, attractor dynamics can work, and
the brain activity therefore converges to a certain memory
state. If synaptic plasticity occurs in this second period, then
the input will be designated as a memory. On the other hand,
if synaptic plasticity occurs at an earlier stage, a chain of
associated memories can be designated as an episodic
memory.

In relation to this hypothesis, consideration of the large
scale of dynamical systems that model the interactions be-

015113-8 Ichiro Tsuda Chaos 19, 015113 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



tween the hippocampus and the neocortex is crucial for an
understanding of the whole scale of the actual memory pro-
cess. However, this is beyond the scope of the present study.

VI. SUMMARY AND DISCUSSIONS

We have provided five scenarios for the appearance of
chaotic itinerancy, which may bring about dynamical inter-
pretations of cortical transitory behaviors. We have also pro-
posed nine hypotheses about the dynamic aspects of
memory, in relation to the neural dynamic activity that has
been observed in laboratories. Using new techniques of mea-
surement that have recently been developed, and also using
many promising ideas discussed in the field of cognitive neu-
roscience, it is expected that these hypotheses will be estab-
lished further. In fact, the possibility of Cantor coding in the
hippocampal CA1 has been discussed from a neurophysi-
ological point of view, and experimental evidence for it has
been reported using the rat hippocampal slice.93

Nonstationary activity of the brain, which is often ob-
served in the laboratories, can be interpreted by itinerant dy-
namics, for which we suggested chaotic itinerancy as a typi-
cal transitory dynamics in high-dimensional dynamical
systems. Nonstationary phenomena in the brain are not al-
ways described by deterministic dynamical systems. A noisy
dynamical system called a random dynamical system may
provide an alternative tool to describe such dynamics. An-
other option for treating the complexity of the brain’s non-
stationary activity is its description by stochastic differential
equations, and also by partial differential equations. All of
these alternatives treat the cortical random activity in
infinite-dimensional space. This issue is related to the transi-
tory dynamics treated here, but is not yet properly described
in the mathematical framework presented.
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